The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to sol...The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.展开更多
In order to eliminate the impact of the Doppler effects caused by the motion of the spacecraft on the X-ray pulsar-based navigation, an innovative navigation method using the pulse phase and Doppler frequency measurem...In order to eliminate the impact of the Doppler effects caused by the motion of the spacecraft on the X-ray pulsar-based navigation, an innovative navigation method using the pulse phase and Doppler frequency measurements of the X-ray pulsars is proposed. Given the initial estimate of the spacecraft's state,the real-time photon arrival model is established at the spacecraft with respect to the spacecraft's position and velocity predicted by the orbit dynamic model and their estimation errors. On this basis, a maximum likelihood estimation algorithm directly using the observed photon event timestamps is developed to extract a single pair of pulse phase and Doppler frequency measurements caused by the spacecraft's state estimation error. Since the phase estimation error increases as the observation time increases, we propose a new measurement updating scheme of referring the measurements to the middle time of an observation interval. By using the ground-based simulation system of X-ray pulsar signals, a series of photon-level simulations are performed. The results testify to the feasibility and real-timeliness of the proposed navigation method, and show that the incorporation of the Doppler measurement as well as the pulse phase into the navigation filter can improve the navigation accuracy.展开更多
Coherent pulse stacking(CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy and high average power. A Z-domain model target...Coherent pulse stacking(CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy and high average power. A Z-domain model targeting the pulsed laser is assembled to describe the optical interference process. An algorithm, extracting the cavity phase and pulse phases from limited data, where only the pulse intensity is available, is developed to diagnose optical cavity resonators. We also implement the algorithm on the cascaded system of multiple optical cavities,achieving phase errors less than 1.0°(root mean square), which could ensure the stability of CPS.展开更多
We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to...We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.展开更多
This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hyste...The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hysteresis, of which the critical magnetic fields are temperature-dependent and show anisotropy. By using a pulsed high magnetic field up to 75 T, the magnetization behavior shows that the critical transition magnetic fields of spin- flip/flop shift to lower field regions with an increase in temperature. According to the magnetization curves, a complete magnetic phase diagram is depicted.展开更多
Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating cir...Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.展开更多
We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on...We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation(MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.展开更多
We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheet...MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.展开更多
Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The...Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The results of numerical simulations are useful for improving compensation for pulse distortion.展开更多
We reported the growth of N-polar InN films on N-polar GaN/sapphire substrates by pulsed metal-organic vapor phase epitaxy. The crystalline quality, surface morphology, optical and electrical properties of N-polar InN...We reported the growth of N-polar InN films on N-polar GaN/sapphire substrates by pulsed metal-organic vapor phase epitaxy. The crystalline quality, surface morphology, optical and electrical properties of N-polar InN films were investigated in details by varying the breaking time and trimethylindium(TMIn) duration of pulse cycle. It has been found that when the breaking time and the TMIn duration in each cycle remain at 30 and 60 s, respectively, the N-polar InN film obtained exhibits a better crystalline quality and greater optical properties. Meanwhile, the surface morphology and electrical properties of the N-polar InN films also greatly depend on the given growth conditions.展开更多
Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier e...Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.展开更多
Multicell converters are an interesting alternative for medium voltage and high power applications,because of the increased number of output voltage levels and apparent frequency.The two most significant types of mult...Multicell converters are an interesting alternative for medium voltage and high power applications,because of the increased number of output voltage levels and apparent frequency.The two most significant types of multicell converter are the flying capacitor multicell (FCM) converter and its derivative,stacked multicell (SM) converter.Balancing flying capacitor voltages is an important constraint to the proper performance of FCM and SM converters.Thus,observation of the flying capacitor voltages used in active control is valuable,but using voltage sensors for observation increases cost and size of the converter.This paper deals with a new strategy to estimate the flying capacitor voltages of both FCM and SM converters.The proposed strategy is based on a discrete time model of the converter and uses only a load current sensor.The circuit was simulated using PSCAD/EMTDC software and simulation results were presented to validate the effectiveness of the proposed estimation strategy in observing the flying capacitor voltages.Simplicity is the most significant advantage of the proposed strategy,its performance being based on simple equations.展开更多
文摘The pulse phase and doppler frequency estimation of X-ray pulsars in dynamic situations and its application in navigation is a problem that has not been fully investigated. In this paper, solutions are proposed to solve this problem under conditions of spacecraft and binary motion. A high-precision doppler frequency (velocity) measurement model as well as a phase (range) measurement model is established. The averaged maximum-likelihood estimator is developed for the dynamic pulse phase estimation. The pulse phase tracking technique is used in the doppler frequency determination. The tracking filter is redesigned and compared with the existing algorithms. The comparison verifies the advantage of the filter algorithm presented in this pa- per. Unlike traditional views, it is found that in dynamic situations, shorter observation interval lengths will result in higher-accuracy phase and frequency estimates as the tracking filter outputs. A photon-level integrated numerical simulation is performed. Simulation results testify to the validity of the proposed phase and doppler frequency estimation scheme, and show that incorporation of velocity measurements as well as the range ones into the navigation estimator will improve the navigation steady-state performance.
文摘In order to eliminate the impact of the Doppler effects caused by the motion of the spacecraft on the X-ray pulsar-based navigation, an innovative navigation method using the pulse phase and Doppler frequency measurements of the X-ray pulsars is proposed. Given the initial estimate of the spacecraft's state,the real-time photon arrival model is established at the spacecraft with respect to the spacecraft's position and velocity predicted by the orbit dynamic model and their estimation errors. On this basis, a maximum likelihood estimation algorithm directly using the observed photon event timestamps is developed to extract a single pair of pulse phase and Doppler frequency measurements caused by the spacecraft's state estimation error. Since the phase estimation error increases as the observation time increases, we propose a new measurement updating scheme of referring the measurements to the middle time of an observation interval. By using the ground-based simulation system of X-ray pulsar signals, a series of photon-level simulations are performed. The results testify to the feasibility and real-timeliness of the proposed navigation method, and show that the incorporation of the Doppler measurement as well as the pulse phase into the navigation filter can improve the navigation accuracy.
基金supported by the Director,Office of Science,Office of High Energy Physics,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231by the National Natural Science Foundation of China under Grant No.11475097
文摘Coherent pulse stacking(CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy and high average power. A Z-domain model targeting the pulsed laser is assembled to describe the optical interference process. An algorithm, extracting the cavity phase and pulse phases from limited data, where only the pulse intensity is available, is developed to diagnose optical cavity resonators. We also implement the algorithm on the cascaded system of multiple optical cavities,achieving phase errors less than 1.0°(root mean square), which could ensure the stability of CPS.
基金Supported by the National Natural Science Foundation of China under Grant No 61205103
文摘We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
基金Supported by the National Natural Science Foundation of China under Grant No 11104091the Guangxi Key Laboratory of Information Materials of Guilin University of Electronic Technology under Grant No 1210908-05-K
文摘The magnetization behavior of a CuFeO2 single crystal grown by the floating zone technique is investigated with a pulsed high magnetic field. We observe a series of field-induced multi-step-like transitions with hysteresis, of which the critical magnetic fields are temperature-dependent and show anisotropy. By using a pulsed high magnetic field up to 75 T, the magnetization behavior shows that the critical transition magnetic fields of spin- flip/flop shift to lower field regions with an increase in temperature. According to the magnetization curves, a complete magnetic phase diagram is depicted.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.61690223,11561121002,61521093,11227902,11404356,and 11574332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16)
文摘Most of the schemes for generating isolated attosecond pulses(IAP) are sensitive to the carrier-envelope phase(CEP)of the driving lasers. We propose a scheme for generating IAP using two-color counter-rotating circularly polarized(TCCRCP) laser pulses. The results demonstrate that the dependence of the IAP generation on CEP stability is largely reduced in this scheme. IAP can be generated at most of CEPs. Therefore, the experiment requirements become lower.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204328,61221064,61078037,11127901,11134010,and 61205208)the National Basic Research Program of China(Grant No.2011CB808101)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)
文摘We numerically study the pulse compression approaches based on atomic or molecular gases in a hollow-core fiber.From the perspective of self-phase modulation(SPM), we give the extensive study of the SPM influence on a probe pulse with molecular phase modulation(MPM) effect. By comparing the two compression methods, we summarize their advantages and drawbacks to obtain the few-cycle pulses with micro- or millijoule energies. It is also shown that the double pump-probe approach can be used as a tunable dual-color source by adjusting the time delay between pump and probe pulses to proper values.
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
基金supported by the Ministry of Higher under Fundamental Research Grant Scheme(No.FRGS/1/2020/TK0/UTM/02/46)Nippon Sheet Glass Grant(No.R.K130000.7343.4B818)。
文摘MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.
文摘Relationship between the initial chirp of super-Gaussian pulse and dispersion and nonlinearity effects of a single-mode fiber in the optical communication system using midway optical phase conjugation is analyzed. The results of numerical simulations are useful for improving compensation for pulse distortion.
文摘We reported the growth of N-polar InN films on N-polar GaN/sapphire substrates by pulsed metal-organic vapor phase epitaxy. The crystalline quality, surface morphology, optical and electrical properties of N-polar InN films were investigated in details by varying the breaking time and trimethylindium(TMIn) duration of pulse cycle. It has been found that when the breaking time and the TMIn duration in each cycle remain at 30 and 60 s, respectively, the N-polar InN film obtained exhibits a better crystalline quality and greater optical properties. Meanwhile, the surface morphology and electrical properties of the N-polar InN films also greatly depend on the given growth conditions.
基金supported by the National Natural Science Foundation of China(Nos. 61475054 and 11574105)the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ029)
文摘Previous research shows that few-cycle laser(FCL) pulses with low energy and without a bias field can be used to coherently detect terahertz(THz) pulses. As we know, it is very difficult to stabilize the carrier envelope phase(CEP) of FCL pulses, i.e., there are some random fluctuations for the CEP. Here we theoretically investigate the influence of such instability on the accuracy of THz detection. Our results show that although there is an optimum CEP for THz detection, the fluctuations of the CEP will lead to terrible thorns on the detected THz waveform. In order to solve this problem, we propose an approach using two few-cycle laser pulses with opposite CEPs, i.e., their CEPs are differed by π.
文摘Multicell converters are an interesting alternative for medium voltage and high power applications,because of the increased number of output voltage levels and apparent frequency.The two most significant types of multicell converter are the flying capacitor multicell (FCM) converter and its derivative,stacked multicell (SM) converter.Balancing flying capacitor voltages is an important constraint to the proper performance of FCM and SM converters.Thus,observation of the flying capacitor voltages used in active control is valuable,but using voltage sensors for observation increases cost and size of the converter.This paper deals with a new strategy to estimate the flying capacitor voltages of both FCM and SM converters.The proposed strategy is based on a discrete time model of the converter and uses only a load current sensor.The circuit was simulated using PSCAD/EMTDC software and simulation results were presented to validate the effectiveness of the proposed estimation strategy in observing the flying capacitor voltages.Simplicity is the most significant advantage of the proposed strategy,its performance being based on simple equations.