Objective To evaluate the feasibility of pulse transit time (PTT) arousals as an index of sleep fragmentation in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). Methods Individuals referred for evalua...Objective To evaluate the feasibility of pulse transit time (PTT) arousals as an index of sleep fragmentation in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). Methods Individuals referred for evaluation of possible OSAHS underwent overnight polysomnography (PSG). Three conventional indices of sleep fragmentation [electroencephalography (EEG) arousals, apnea/hypopnea index (AHI), oxygen desaturation index (ODI)], PTT arousals, and Epworth sleepiness scale (ESS) were compared. Results PTT arousals were positively correlated with EEG arousals (r= 0.746, P<0.001), AHI (r= 0.786, P<0.001), and ODI (r= 0.665, P<0.001), respectively. But, both PTT arousals and EEG arousals had no correlation with ESS (r= 0.432, P=0.201; r= 0.196, P=0.591, respectively). Conclusion PTT arousals are correlated well with other standard measures estimating severity of OSAHS and potentially a non-invasive marker with which to measure the sleep fragmentation in patients with OSAHS.展开更多
The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pu...The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.展开更多
Continuous non-invasive blood pressure (BP) measurement can be realized by using pulse transit time (PTT) based on electrocardiogram (ECG) and pulse wave signal. Modulated magnetic signature of blood (MMSB) is a promi...Continuous non-invasive blood pressure (BP) measurement can be realized by using pulse transit time (PTT) based on electrocardiogram (ECG) and pulse wave signal. Modulated magnetic signature of blood (MMSB) is a promising approach to obtain PTT. The origin of MMSB is critical to establish the relationship between MMSB and BP. In this paper, two possible origins of MMSB, blood disturbance mechanism and angular variation mechanism, are analyzed and verified through three control experi-ments under different conditions. The influence of blood velocity alteration and blood volume alteration on magnetic field is investigated though blood flow simulation sys-tem. It is found that MMSB comes mainly from the periodic blood flow while the per-turbation caused by angular variation between sensitive axis of the magnetic sensor and geomagnetic field can be neglected. As to blood disturbance mechanism, the change of blood volume plays a decisive role while the effect of blood velocity altera-tion is negligible.展开更多
We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or bl...Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line.However,detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed,such as internal bleeding.This study considered physiological signals such as electrocardiogram(ECG),photoplethysmogram(PPG),blood pressure,oxygen saturation(SpO2),and respiration,and proposed the machine learning model to detect the need for blood transfusion accurately.For the model,this study extracted 14 features from the physiological signals and used an ensemble approach combining extreme gradient boosting and random forest.The model was evaluated by a stratified five-fold crossvalidation:the detection accuracy and area under the receiver operating characteristics were 92.7%and 0.977,respectively.展开更多
Blood pressure is an important physiological parameter to reflect human vital signs.In order to achieve the non-contact dynamic blood pressure acquisition based on ordinary optical camera,a theoretical understanding o...Blood pressure is an important physiological parameter to reflect human vital signs.In order to achieve the non-contact dynamic blood pressure acquisition based on ordinary optical camera,a theoretical understanding of the functional relationship between blood pressure and pulse wave signal conduction time.And through imaging photoelectric plethysmography(IPPG),pulse wave signal conduction time of forehead and hand was obtained with ordinary optical camera.First,the pulse wave conduction time was obtained by recording the video with an ordinary optical camera.Second,real-time blood pressure values were collected.Finally,based on the relationship between blood pressure and pulse wave conduction time,a non-contact blood pressure measurement prediction model was obtained through neural network fitting.So that non-contact blood pressure measurement with optical camera could be completed.The method in this paper has several advantages,such as low requirements on measuring equipment,low cost,and simple operation.It can let people get rid of the discomfort caused by measuring equipment such as cuff and can measure blood pressure at any time.The predicted blood pressure results were compared with an Omron wrist electronic sphygmomanometer.The calculated error of systolic blood pressure is-9.28%~3.16%,and the error of diastolic blood pressure is-9.84~4.35%.展开更多
In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical r...In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.展开更多
In order to increase the usefulness of pulsed current source in engineering practice, research and study was carried out on how to increase the pulse current amplitude, reduce the rise /fall time of output pulse and M...In order to increase the usefulness of pulsed current source in engineering practice, research and study was carried out on how to increase the pulse current amplitude, reduce the rise /fall time of output pulse and MOSFET switching losses, etc. Through the analysis of the pulsed current source works theory and the mathematical derivation of the circuit model, the deduction and calculation of the pulse edge compression control methods, and improve the overall circuit structure and optimize the manufacturing process according to the theory. The following indicators was realized: the output pulse current amplitude can be up to 100 A, the shortest pulse rise / fall time was 18.8 ns and 16.1 ns respectively when the maximum amplitude output, the pulse width could be narrowest to 40 ns, repetition frequency could achieve 10 Hz to 10 k Hz, MOSFET switching losses decreased by 30.9 %. This pulsed current source can be used, not only as the power supply for the ordinary high speed narrow pulse width laser diode, but also as an ideal drive power for the high energy, narrow width pulse laser diode.展开更多
This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on ...This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on the advances of the key techniques supporting XNAV,including the navigation pulsar database,the X-ray detection system,and the pulse time of arrival estimation.Moreover,the methods to improve the estimation performance of XNAV are reviewed.Finally,some remarks on the future development of XNAV are provided.展开更多
文摘Objective To evaluate the feasibility of pulse transit time (PTT) arousals as an index of sleep fragmentation in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). Methods Individuals referred for evaluation of possible OSAHS underwent overnight polysomnography (PSG). Three conventional indices of sleep fragmentation [electroencephalography (EEG) arousals, apnea/hypopnea index (AHI), oxygen desaturation index (ODI)], PTT arousals, and Epworth sleepiness scale (ESS) were compared. Results PTT arousals were positively correlated with EEG arousals (r= 0.746, P<0.001), AHI (r= 0.786, P<0.001), and ODI (r= 0.665, P<0.001), respectively. But, both PTT arousals and EEG arousals had no correlation with ESS (r= 0.432, P=0.201; r= 0.196, P=0.591, respectively). Conclusion PTT arousals are correlated well with other standard measures estimating severity of OSAHS and potentially a non-invasive marker with which to measure the sleep fragmentation in patients with OSAHS.
基金supported by National Natural Science Foundation of China (Nos. 52037004, 51777091 and52250410350)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1314)。
文摘The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.
文摘Continuous non-invasive blood pressure (BP) measurement can be realized by using pulse transit time (PTT) based on electrocardiogram (ECG) and pulse wave signal. Modulated magnetic signature of blood (MMSB) is a promising approach to obtain PTT. The origin of MMSB is critical to establish the relationship between MMSB and BP. In this paper, two possible origins of MMSB, blood disturbance mechanism and angular variation mechanism, are analyzed and verified through three control experi-ments under different conditions. The influence of blood velocity alteration and blood volume alteration on magnetic field is investigated though blood flow simulation sys-tem. It is found that MMSB comes mainly from the periodic blood flow while the per-turbation caused by angular variation between sensitive axis of the magnetic sensor and geomagnetic field can be neglected. As to blood disturbance mechanism, the change of blood volume plays a decisive role while the effect of blood velocity altera-tion is negligible.
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
基金This work was supported by the Korea Medical Device Development Fund from the Korean government(the Ministry of Science and ICTMinistry of Trade,Indus-try and Energy+2 种基金Ministry of Health and Welfareand Ministry of Food and Drug Safety)(KMDF_PR_20200901_0095)the Soonchunhyang University Research Fund.
文摘Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life.For those patients requiring blood,blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line.However,detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed,such as internal bleeding.This study considered physiological signals such as electrocardiogram(ECG),photoplethysmogram(PPG),blood pressure,oxygen saturation(SpO2),and respiration,and proposed the machine learning model to detect the need for blood transfusion accurately.For the model,this study extracted 14 features from the physiological signals and used an ensemble approach combining extreme gradient boosting and random forest.The model was evaluated by a stratified five-fold crossvalidation:the detection accuracy and area under the receiver operating characteristics were 92.7%and 0.977,respectively.
基金The work of this paper is supported by the National Natural Science Foundation of China under Grant No.61572038,the Innovation Project Foundation NCUT.
文摘Blood pressure is an important physiological parameter to reflect human vital signs.In order to achieve the non-contact dynamic blood pressure acquisition based on ordinary optical camera,a theoretical understanding of the functional relationship between blood pressure and pulse wave signal conduction time.And through imaging photoelectric plethysmography(IPPG),pulse wave signal conduction time of forehead and hand was obtained with ordinary optical camera.First,the pulse wave conduction time was obtained by recording the video with an ordinary optical camera.Second,real-time blood pressure values were collected.Finally,based on the relationship between blood pressure and pulse wave conduction time,a non-contact blood pressure measurement prediction model was obtained through neural network fitting.So that non-contact blood pressure measurement with optical camera could be completed.The method in this paper has several advantages,such as low requirements on measuring equipment,low cost,and simple operation.It can let people get rid of the discomfort caused by measuring equipment such as cuff and can measure blood pressure at any time.The predicted blood pressure results were compared with an Omron wrist electronic sphygmomanometer.The calculated error of systolic blood pressure is-9.28%~3.16%,and the error of diastolic blood pressure is-9.84~4.35%.
文摘In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.
基金supported by the Changchun Science and Technology Project (13KG28)the Jilin Province Science and Technology Development Plan (20120320)
文摘In order to increase the usefulness of pulsed current source in engineering practice, research and study was carried out on how to increase the pulse current amplitude, reduce the rise /fall time of output pulse and MOSFET switching losses, etc. Through the analysis of the pulsed current source works theory and the mathematical derivation of the circuit model, the deduction and calculation of the pulse edge compression control methods, and improve the overall circuit structure and optimize the manufacturing process according to the theory. The following indicators was realized: the output pulse current amplitude can be up to 100 A, the shortest pulse rise / fall time was 18.8 ns and 16.1 ns respectively when the maximum amplitude output, the pulse width could be narrowest to 40 ns, repetition frequency could achieve 10 Hz to 10 k Hz, MOSFET switching losses decreased by 30.9 %. This pulsed current source can be used, not only as the power supply for the ordinary high speed narrow pulse width laser diode, but also as an ideal drive power for the high energy, narrow width pulse laser diode.
基金the National Natural Science Foundation of China(No.61703413)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3078).
文摘This article provides a review on X-ray pulsar-based navigation(XNAV).The review starts with the basic concept of XNAV,and briefly introduces the past,present and future projects concerning XNAV.This paper focuses on the advances of the key techniques supporting XNAV,including the navigation pulsar database,the X-ray detection system,and the pulse time of arrival estimation.Moreover,the methods to improve the estimation performance of XNAV are reviewed.Finally,some remarks on the future development of XNAV are provided.