In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performan...A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.展开更多
The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design...The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design parameters by using the method of optimization, and reduce the pulse degree of pulse CVT and its range of variation. But the fact is that the reduction of the pulse degree is not significant. This article presents a new structure of mechanical pulse CVT--the rotational swashplate pulse CVT with driven by helical gear axial meshing. This transmission is simple and compact in structure and low in pulsatile rate (it adopts 6 guide rods), and the pulsatile degree is irrelevant to the transmission ratio. Theoretically, pulsatile rate could be reduced to zero if appropriate curved surface of the swashplate is used. Compared with the connecting rod pulse CVT, the present struc^tre uses helical gear mechanism as transmission part and it avoids unbalanced inertial force in the former model. This paper analyzes the principle of driving of this transmission, presents its mechanical structure, and discusses its motion characteristics. Experimental prototype of this type of CVT has been manufactured. Tests for the transmission efficiency(when the rotational speed of the output shaft is the maximum) and the angular velocity of the output shaft have been carried out, and data have been analyzed. The experimental results show that the speed of the output shaft for the experimental prototype is slightly lower than the theoretical value, and the transmission efficiency of the experimental prototype is about 70%. The pulse degree of the CVT discussed in this paper is less than the existing pulse CVT of other types, and it is irrelevant to the transmission ratio of the CVT. The research provides the new idea to the CVT study.展开更多
We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate,...We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters(rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a?>?90 k V RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m^-1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge.展开更多
A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical syst...A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.展开更多
Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an open...Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.展开更多
The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver na...The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.展开更多
Q-switched pulses at 1.064μm with a peak power of 5.02 kW and a pulse width of 2.8 ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate.These values were achie...Q-switched pulses at 1.064μm with a peak power of 5.02 kW and a pulse width of 2.8 ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate.These values were achieved by combining the techniques of acousto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching.The temporal characteristics of the pulses were analysed numerically.The experimental results are shown to be in good agreement with theoretical predictions.展开更多
Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for ca...Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for calculating the transmission loss. Firstly, the transmission loss of the single-cavity element was simulated without any airflow, and the effects of different structural parameters on the acoustic performance were investigated comprehensively. Secondly, the static transmission loss of the perforated intake pipe was obtained by the rectangular-pulse method, which is proved to be accurate enough compared with the result by finite element method. Thirdly, under the different conditions of the mean airflow and the operating temperature, the specific transmission loss was acquired respectively. In general, the peaks of the transmission loss are shifted to the lower frequency range because of the reverse airflow, but the amplitudes are irregularly changed. Besides, when the operating temperature increases, the peaks are shifted to the higher frequencies. Finally, with the designed perforated pipe installed to the intake system, the road tests were proceeded to evaluate the actual acoustic performance, and the result indicates that the intake sound pressure level is greatly attenuated. Typically in the range of 600–1500 Hz, the insertion loss of the intake noise at the decelerating moment is almost 20 d B(A), and the overall noise is reduced more than 14.2 d B(A). In conclusion, the perforated intake pipe has been proved excellent in improving the acoustic performance of intake system and could provide the guidance for the automotive engineering application.展开更多
Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to ...Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.展开更多
The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indiu...The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.展开更多
Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit mo...Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.展开更多
Telecom sectors generally operate at negative voltages to reduce the effect of corrosion caused in the metallic wire due to electrochemical reaction while communicating signals. To feed those lines and to have an effe...Telecom sectors generally operate at negative voltages to reduce the effect of corrosion caused in the metallic wire due to electrochemical reaction while communicating signals. To feed those lines and to have an effective digital data transmission, a power electronic converter referred as Modified Negative Luo Converter (MNLC) is proposed in this paper. MNLC is a high gain converter in which the output voltage increases in geometric progression. This paper portrays a novel concept of a 50 Hz pulse data transmission through RLCG (Resistance-inductance-capacitance with a shunt conductance) transmission line using MNLC. Signal frequency of 50 Hz to be transmitted is anded with a high frequency pulse that charges and discharges MNLC and produces the boosted negative output voltage. The boosted output is again transmitted through the RLCG transmission line from which 50 Hz data pulse is retrieved at the output of the transmission line by comparing with a comparator signal. This sort of MNLC aided data transmission not only introduces less loss in its transmitted data but also overcomes various health hazards of conventional radio frequency (RF) communication. This technique also proves that any data bit stream can be transmitted and retrieved using the proposed high gain DC-DC converter. The simulation model of the proposed system is implemented in MATLAB for various switching frequencies with its prototype of the converter developed and the results are verified.展开更多
An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan ...An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan probing is reported. As well, a theoretical model based on the generalized Avizonis-Grotbeck equations is developed and applied for straightforward fitting of the open- and closed-aperture Z-scans, obtained for ZnSe:Fe2+ with different Fe2+ centers concentrations. The modeling results reveal that the contributions in the absorption and refractive index nonlinearities of ZnSe:Fe2+ are “common” resonant-absorption saturation (the minor part) and pulse-induced heating of the samples (the major part), which are strongly dependent on Fe2+ concentrations. Large values of the index change (>~10-3) and partial resonant-absorption bleaching (limited by ~50%), both produced via the thermal effect mainly, are the features of the ZnSe:Fe2+ samples inherent to this type of excitation.展开更多
Numerical method to solve the problem related with the interactive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolution...Numerical method to solve the problem related with the interactive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit rate transmission.展开更多
Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip...Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip-flop)using a transmission gate.To accomplish a power-efficient pulsed D flip-flop,clock gating is proposed.The gated clock reduces the unnecessary switching of the transistors in the circuit and thus reduces the dynamic power consumption.The clock gating approach is employed by using an AND gate to disrupt the clock input to the circuit as per the control signal called Enable.Due to this process,the clock gets turned off to reduce power consumption when there is no change in the output.The proposed transmission gate-based pulsed D flip-flop’s performance with clock gating and without clock gating circuit is analyzed.The proposed pulsed D flip-flop power consumption is 1.586μw less than the without clock gated flip-flop.Also,the authors have designed a 3-bit serial-in and parallel-out shift register using the proposed D flip-flop and analyzed the performance.Tanner Electronic Design Automation tool is used to simulate all the circuits with 45 nm technology.展开更多
Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate b...Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.展开更多
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
文摘A nonlinear single neuron is demonstrated to exhibit stochastic resonance by theoretical analysis and numerical simulations. This single neuron is used for noisy periodic signal transmission, and significant performance of raising input output SNR gain can be achieved. The research of this paper not only gives a very simple model of neuron with stochastic resonance, but also enlarges the application scope of neuron to the transmission of periodic signals.
基金supported by Beijing Municipal Natural Science Foundation of China(Grant No. 3123036)Science and Technology Project of Beijing Municipal Education Commission of China(Grant No.KM200911417010)
文摘The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design parameters by using the method of optimization, and reduce the pulse degree of pulse CVT and its range of variation. But the fact is that the reduction of the pulse degree is not significant. This article presents a new structure of mechanical pulse CVT--the rotational swashplate pulse CVT with driven by helical gear axial meshing. This transmission is simple and compact in structure and low in pulsatile rate (it adopts 6 guide rods), and the pulsatile degree is irrelevant to the transmission ratio. Theoretically, pulsatile rate could be reduced to zero if appropriate curved surface of the swashplate is used. Compared with the connecting rod pulse CVT, the present struc^tre uses helical gear mechanism as transmission part and it avoids unbalanced inertial force in the former model. This paper analyzes the principle of driving of this transmission, presents its mechanical structure, and discusses its motion characteristics. Experimental prototype of this type of CVT has been manufactured. Tests for the transmission efficiency(when the rotational speed of the output shaft is the maximum) and the angular velocity of the output shaft have been carried out, and data have been analyzed. The experimental results show that the speed of the output shaft for the experimental prototype is slightly lower than the theoretical value, and the transmission efficiency of the experimental prototype is about 70%. The pulse degree of the CVT discussed in this paper is less than the existing pulse CVT of other types, and it is irrelevant to the transmission ratio of the CVT. The research provides the new idea to the CVT study.
基金supported by the China Postdoctoral Science Foundation (No. 2018M6335598)
文摘We constructed a compact high-power RF pulse generator based on a gyro-magnetic nonlinear transmission line(GNLTL) to produce a high-voltage pulse with a sub-nanosecond rise time and a relatively high repetition rate, which shows great potential for application in the high-power ultrawideband electromagnetic effect, etc. The influence of incident pulse parameters(rise time and voltage amplitude) and line length on the sharpening characteristics of the GNLTL were investigated experimentally to optimize the rising rate of the modulated pulse front. Based on the GNLTL equivalent circuit model consisting of an LC ladder network, the rise time, the voltage conversion coefficient and the rising rate properties of a modulated pulse were also numerically analyzed in a wider range. The results show that a?>?90 k V RF pulse with a rise time of 350 ps and a repetition rate of 1 kHz in burst mode is produced by the GNLTL at an axial biasing magnetic field of 22 kA m^-1 and a line length of 30 cm under the condition of a 70 kV incident pulse. Applying a faster and higher incident pulse is conducive to improving the sharpening effect of the GNLTL. Furthermore, within a certain range, increasing the line length of the GNLTL not only reduces the rise time, but increases the voltage conversion coefficient and the rising rate of a modulated pulse. Furthermore, considering the energy loss of ferrite rings, there is an optimal line length to obtain the fastest rising rate of a modulated pulse front edge.
基金the National Natural Science Foundation of China(No.10471117)
文摘A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free' periodic solution is obtained, further, it is shown that the ‘infection-free' periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.
基金supported by National Natural Science Foundation of China(Nos.10925421,10735050,10974250,10935002)
文摘Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501358)the Fundamental Research Funds for the Central Universities,China
文摘The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.
基金Supported by the National Natural Science Foundation of China under Grant No.69347003the National"863 program" under Grant No.863-307-13-2。
文摘Q-switched pulses at 1.064μm with a peak power of 5.02 kW and a pulse width of 2.8 ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate.These values were achieved by combining the techniques of acousto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching.The temporal characteristics of the pulses were analysed numerically.The experimental results are shown to be in good agreement with theoretical predictions.
基金Project(51705454)supported by the National Natural Science Foundation of China
文摘Exact simulation of the acoustic performance is essential to the engineering application for a vehicle intake system. The rectangular-pulse method based on the computational fluid dynamics approach was employed for calculating the transmission loss. Firstly, the transmission loss of the single-cavity element was simulated without any airflow, and the effects of different structural parameters on the acoustic performance were investigated comprehensively. Secondly, the static transmission loss of the perforated intake pipe was obtained by the rectangular-pulse method, which is proved to be accurate enough compared with the result by finite element method. Thirdly, under the different conditions of the mean airflow and the operating temperature, the specific transmission loss was acquired respectively. In general, the peaks of the transmission loss are shifted to the lower frequency range because of the reverse airflow, but the amplitudes are irregularly changed. Besides, when the operating temperature increases, the peaks are shifted to the higher frequencies. Finally, with the designed perforated pipe installed to the intake system, the road tests were proceeded to evaluate the actual acoustic performance, and the result indicates that the intake sound pressure level is greatly attenuated. Typically in the range of 600–1500 Hz, the insertion loss of the intake noise at the decelerating moment is almost 20 d B(A), and the overall noise is reduced more than 14.2 d B(A). In conclusion, the perforated intake pipe has been proved excellent in improving the acoustic performance of intake system and could provide the guidance for the automotive engineering application.
基金supported by National Natural Science Foundation of China(No.50637010)
文摘Based on the transmission line code TLCODE, a 1D circuit model for a transmission- line impedance transformer was developed and the simulation results were compared with those in the literature. The model was used to quantify the efficiencies of voltage-transport, energy- transport and power-transport for a transmission-line impedance transformer as functions of ψ (the ratio of the output impedance to the input impedance of the transformer) and Г (the ratio of the pulse width to the one-way transit time of the transformer) under a large scale of m (the coefficient of the generalized exponential impedance profile). Simulation results suggest that with the increase in Г, from 0 to ∞, the power transport efficiency first increases and then decreases. The maximum power transport efficiency can reach 90% or even higher for an exponential impedance profile (m = 1). With a consideration of dissipative loss in the dielectric and electrodes of the transformer, two representative designs of the water-insulated transformer are investigated for the next generation of petawatt-class z-pinch drivers. It is found that the dissipative losses in the electrodes are negligibly small, below 0.1%, but the dissipative loss in the water dielectric is about 1% to 4%.
基金the National Natrural Science Foundation of China(Nos. 50902137 and 60937003)
文摘The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.
基金supported by National Natural Science Foundation of China(Nos.51307141,51077111)by the State Key Laboratory Foundational Research Funds of China(Nos.SKLIPR1302Z,SKLIPR1306)
文摘Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.
文摘Telecom sectors generally operate at negative voltages to reduce the effect of corrosion caused in the metallic wire due to electrochemical reaction while communicating signals. To feed those lines and to have an effective digital data transmission, a power electronic converter referred as Modified Negative Luo Converter (MNLC) is proposed in this paper. MNLC is a high gain converter in which the output voltage increases in geometric progression. This paper portrays a novel concept of a 50 Hz pulse data transmission through RLCG (Resistance-inductance-capacitance with a shunt conductance) transmission line using MNLC. Signal frequency of 50 Hz to be transmitted is anded with a high frequency pulse that charges and discharges MNLC and produces the boosted negative output voltage. The boosted output is again transmitted through the RLCG transmission line from which 50 Hz data pulse is retrieved at the output of the transmission line by comparing with a comparator signal. This sort of MNLC aided data transmission not only introduces less loss in its transmitted data but also overcomes various health hazards of conventional radio frequency (RF) communication. This technique also proves that any data bit stream can be transmitted and retrieved using the proposed high gain DC-DC converter. The simulation model of the proposed system is implemented in MATLAB for various switching frequencies with its prototype of the converter developed and the results are verified.
文摘An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan probing is reported. As well, a theoretical model based on the generalized Avizonis-Grotbeck equations is developed and applied for straightforward fitting of the open- and closed-aperture Z-scans, obtained for ZnSe:Fe2+ with different Fe2+ centers concentrations. The modeling results reveal that the contributions in the absorption and refractive index nonlinearities of ZnSe:Fe2+ are “common” resonant-absorption saturation (the minor part) and pulse-induced heating of the samples (the major part), which are strongly dependent on Fe2+ concentrations. Large values of the index change (>~10-3) and partial resonant-absorption bleaching (limited by ~50%), both produced via the thermal effect mainly, are the features of the ZnSe:Fe2+ samples inherent to this type of excitation.
文摘Numerical method to solve the problem related with the interactive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit rate transmission.
文摘Recent digital applications will require highly efficient and high-speed gadgets and it is related to the minimum delay and power consumption.The proposed work deals with a low-power clock pulsed data flip-flop(D flip-flop)using a transmission gate.To accomplish a power-efficient pulsed D flip-flop,clock gating is proposed.The gated clock reduces the unnecessary switching of the transistors in the circuit and thus reduces the dynamic power consumption.The clock gating approach is employed by using an AND gate to disrupt the clock input to the circuit as per the control signal called Enable.Due to this process,the clock gets turned off to reduce power consumption when there is no change in the output.The proposed transmission gate-based pulsed D flip-flop’s performance with clock gating and without clock gating circuit is analyzed.The proposed pulsed D flip-flop power consumption is 1.586μw less than the without clock gated flip-flop.Also,the authors have designed a 3-bit serial-in and parallel-out shift register using the proposed D flip-flop and analyzed the performance.Tanner Electronic Design Automation tool is used to simulate all the circuits with 45 nm technology.
基金supported by the Key Research Program of the Chinese Academy of Sciences(grant number ZDRW-ZS-2021-1-2).
文摘Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.