When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse wi...When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.展开更多
高速磁浮交通牵引变流器采用24 MVA背靠背三电平有源中点钳位拓扑,其中两台整流器和两台逆变器共用直流母线。该文分析整流侧和逆变侧在不同功率因数下中点电压(neutral point voltage,NPV)偏移机理及不同电压矢量对NPV的具体影响。据此...高速磁浮交通牵引变流器采用24 MVA背靠背三电平有源中点钳位拓扑,其中两台整流器和两台逆变器共用直流母线。该文分析整流侧和逆变侧在不同功率因数下中点电压(neutral point voltage,NPV)偏移机理及不同电压矢量对NPV的具体影响。据此,针对高速磁浮逆变器并联和串联两种模式,建立NPV偏移模型,得到在调制比和功率因数同时变化时NPV的可控区域。为在全速范围保证NPV平衡,提出一种基于平移调制波的协同控制策略。为减轻整流器功率因数和调制比对NPV的影响,采用一种具有相电压半波对称性的载波脉宽调制,并证明其具备NPV自平衡能力。仿真和硬件在环实验表明,所提策略具有NPV恢复到平衡状态所需时间短、可控范围大等优点,可在高速磁浮全速工况下保证NPV平衡。展开更多
针对原边反馈反激变换器具有辅助绕组而成本偏高的问题,基于原边反馈与峰值电流控制方案,提出了一种基于开关管漏极反馈的反激变换器模型。与原边反馈反激变换器相比,漏极反馈反激变换器能够减少变压器辅助绕组,降低了成本,且具有较高...针对原边反馈反激变换器具有辅助绕组而成本偏高的问题,基于原边反馈与峰值电流控制方案,提出了一种基于开关管漏极反馈的反激变换器模型。与原边反馈反激变换器相比,漏极反馈反激变换器能够减少变压器辅助绕组,降低了成本,且具有较高的稳定性。首先,对此漏极反馈反激变换器模型进行了理论分析,并提出了一种高精度漏极采样方法。其次,基于开关网络模型法对工作在断续导通模式(Discontinuous conduction mode,DCM)下脉冲频率调制(Pulse frequency modulation,PFM)的漏极反馈反激变换器进行了小信号建模并进行补偿设计。通过Matlab/Simulink搭建模型验证其正确性;最后搭建试验平台来进行验证。结果表明,所提出的漏极反馈反激变换器模型是可行的。展开更多
Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in sys...Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.展开更多
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the eff...The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.展开更多
由N个相同H桥功率模块(H-bridge power module,HBPM)组成的传统级联H桥功率放大器(cascaded H-bridge power amplifier,CHB-PA)最多可输出2N+1的电平数,输出电平数直接影响功率放大器的正弦特性和保真性能。在级联HBPM数量相同的情况下...由N个相同H桥功率模块(H-bridge power module,HBPM)组成的传统级联H桥功率放大器(cascaded H-bridge power amplifier,CHB-PA)最多可输出2N+1的电平数,输出电平数直接影响功率放大器的正弦特性和保真性能。在级联HBPM数量相同的情况下,首先提出了一种非对称级联多电平功率放大器(asymmetrical cascaded multilevel power amplifier,ACM-PA);其次,为了与传统CHB-PA有相同HBPM数目的ACM-PA,提出一种虚拟载波移相脉宽调制(virtual carrier phase shift pulse width modulation,VCPS-PWM)策略,将输出电平数提高到6N-3;最后,通过仿真对比验证了所提出的ACM-PA和VCPS-PWM可以显著提高输出电平数,降低负载电流的总谐波失真,提高功率放大器的保真性能。展开更多
文摘When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.
文摘高速磁浮交通牵引变流器采用24 MVA背靠背三电平有源中点钳位拓扑,其中两台整流器和两台逆变器共用直流母线。该文分析整流侧和逆变侧在不同功率因数下中点电压(neutral point voltage,NPV)偏移机理及不同电压矢量对NPV的具体影响。据此,针对高速磁浮逆变器并联和串联两种模式,建立NPV偏移模型,得到在调制比和功率因数同时变化时NPV的可控区域。为在全速范围保证NPV平衡,提出一种基于平移调制波的协同控制策略。为减轻整流器功率因数和调制比对NPV的影响,采用一种具有相电压半波对称性的载波脉宽调制,并证明其具备NPV自平衡能力。仿真和硬件在环实验表明,所提策略具有NPV恢复到平衡状态所需时间短、可控范围大等优点,可在高速磁浮全速工况下保证NPV平衡。
文摘针对原边反馈反激变换器具有辅助绕组而成本偏高的问题,基于原边反馈与峰值电流控制方案,提出了一种基于开关管漏极反馈的反激变换器模型。与原边反馈反激变换器相比,漏极反馈反激变换器能够减少变压器辅助绕组,降低了成本,且具有较高的稳定性。首先,对此漏极反馈反激变换器模型进行了理论分析,并提出了一种高精度漏极采样方法。其次,基于开关网络模型法对工作在断续导通模式(Discontinuous conduction mode,DCM)下脉冲频率调制(Pulse frequency modulation,PFM)的漏极反馈反激变换器进行了小信号建模并进行补偿设计。通过Matlab/Simulink搭建模型验证其正确性;最后搭建试验平台来进行验证。结果表明,所提出的漏极反馈反激变换器模型是可行的。
文摘Natural properties of high speed on-off valves can be described through their on-off behavior and spool movement (static and oscillating) characteristics. High speed on-off valves can be combined with actuators in systems into four typical types of composite valves whose static characteristics are related not only to the structures of the single valves and the composite ones, but also to the PWM control modes. It is proved that the composite valves have similar features as those of servo valves. The nonlinear specific properties of single valves composited can be completely compensated by the suitable PWM control modes.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No.2006AA09Z215)
文摘The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers.