The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) re...The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.展开更多
A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previ...A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.展开更多
In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs...In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.展开更多
In many classic Ultra Wide Band communication systems, only Gaussian and monocycle pulses associate to PPM modulation are used. In this paper, an original communication system based on orthogonal functions and the Bip...In many classic Ultra Wide Band communication systems, only Gaussian and monocycle pulses associate to PPM modulation are used. In this paper, an original communication system based on orthogonal functions and the Bipolar PPM modulation is proposed. This system allows good performances in terms of Bit Error Rate (BER) and high data rate. This study concerns new applications, such as Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication systems or a wireless link between computers. These applications need high reliability to transmit security-related information and high data rate to exchange multimedia data. With the emergence of the orthogonal wave-forms, the performances of the UWB communication system will be more interesting in terms of BER and data rate. In this paper, two kinds of improvement are proposed. The first improvement permits us to decrease the Bit Error Rate using the original waveforms. The second allows improving the data rate via novel modulation method. The last parameter study, in this paper, concerns the problem of synchronization between the different users. We will study the performances of the proposed system in multiusers environment in synchronous and asynchronous cases. In the first stage, the theoretical and simulation results will be presented for the proposed system. The simulation results obtained by comparing the classic UWB system and the proposed system show that our solution gives good performances in terms of BER and data rate. The theoretical results of BER values will be given for our proposed solution. In the second stage, we will compute BER values for different jitter effects. Theses studies report theoretical and simulation performances evaluation in the case of two展开更多
The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their servic...The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their service offerings. These generations of mobile networks were initially invented to meet the requirements of the above-mentioned applications. However, as the requirements in these applications continue to increase, new mobile technologies such as 5G (fifth generation), 5G and beyond (B5G, beyond fifth generation), and 6G (sixth generation) are still progressing and being experimented. These networks are very heterogeneous generations of mobile networks that will have to offer very high throughput per user, good energy efficiency, better traffic capacity per area, improved spectral efficiency, very low latency, and high mobility. To meet these requirements, the radio interface of future mobile networks will have to be flexible and rationalized the available frequency resources. Therefore, new modulation methods, access techniques and waveforms capable of supporting these technological changes are proposed. This review presents brief descriptions of the types of 5G, B5G, and 6G waveforms. The 5G consists of OFDM including its transmission techniques: generalized frequency division multiplexing (GFDM), filter bank based multi-carrier (FBMC), universal filtered multi-carrier (UFMC), and index modulation (IM). Meanwhile, the 6G covers orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM) and orthogonal time sequence multiplexing (OTSM). The networks’ potentialities, advantages, disadvantages, and future directions are outlined.展开更多
Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
The 5G(fifth generation)mobile communications aim to support a large versatile type of services with different and often diverging requirements,which has posed significant challenges on the design of 5G systems.Modula...The 5G(fifth generation)mobile communications aim to support a large versatile type of services with different and often diverging requirements,which has posed significant challenges on the design of 5G systems.Modulation and waveforms are one of the key physical layer componentsthat determine the system throughput,reliability,and complexity,therefore their design is critical in meeting the variety requirements of 5G services.A comprehensive overview was presented on the modulation and waveforms that have been considered for their potential application to 5G in the literature,identifying their design requirements,and discussing their advantages to meet such requirements.Additional considerations that extend our view to higher layer aspects and air interface harmonization are provided as the final remarks.As a result of this article,it is hopeful to draw greater attentions from the readers on this important topic,and trigger further studies on the promising modulation and waveform candidates.展开更多
An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency e...An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency error caused by neutral point voltage ripple and high frequency error introduced by space vector synthesis were both taken into account,and the unified error model of output current ripple was established.By taking continuous and discontinuous modulation strategies as examples,the unified error model was validated through Fourier analysis of the experimental results.The proposed evaluation method will be helpful for the switching sequence optimization and the modulation strategy selection.展开更多
In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by tran...In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by transforming the input Gaussian pulse.Tolerances of the CM-LPGC-based shaper to various non-ideal excitation conditions and fabricating errors are investigated.Results confirm that CM-LPGC is stable and suitable for optical pulse shaping operation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60977005)
文摘The sub-land/sub-pit affects the characteristic of the tracking error signal which is generated by the conventional differential phase detection (DPD) method in the signal waveform modulation multi-level (SWML) read-only disc. To solve this problem, this paper proposes a new tracking error detection method using amplitude difference. Based on the diffraction theory, the amplitude difference is proportional to the tracking error and is feasible to be used for obtaining the off-track information. The experimental system of the amplitude difference detection method is developed. The experimental results show that the tracking error signal derived from the new method has better performance in uniformity and signal-to-noise ratio than that derived from the conventional DPD method in the SWML read-only disc.
文摘A novel read channel for signal waveform modulation multi-level disc is presented in this paper. This read channel employs timing recovery system and partial response maximum likelihood detector. Compared to the previous read channel composed of level detection and run-length detection, the present read channel shows superiority in capacity increase and robust performance. Especially, relying on the partial response maximum likelihood detection, lower bit error rate can be obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127010)
文摘In this paper, we describe an improved adaptive partial response maximum likelihood (PRML) method combining modulation code tbr signal waveform modulation multi-level disc. This improved adaptive PRML method employs partial response equalizer and adaptive viterbi detector combining modulation code. Compared with the traditional adaptive PRML detector, the improved PRML detector additionally employs illogical sequence detector and corrector. Illogical sequence detector and corrector can aw)id the appearance of illogical sequences effectively, which do not follow the law of modulation code for signal waveform modulation multi-level disc, and obtain the correct sequences. We implement the improved PRML detector using a DSP and an FPGA chip. The experimental results show good performance. The higher efficient and lower complexity can be obtained by using the improved PRML method than by using the previous PRML method. Meanwhile, resource utilization of the improved PRML detector is not changed, but the bit error rate (BER) is reduced by more than 20%.
文摘In many classic Ultra Wide Band communication systems, only Gaussian and monocycle pulses associate to PPM modulation are used. In this paper, an original communication system based on orthogonal functions and the Bipolar PPM modulation is proposed. This system allows good performances in terms of Bit Error Rate (BER) and high data rate. This study concerns new applications, such as Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication systems or a wireless link between computers. These applications need high reliability to transmit security-related information and high data rate to exchange multimedia data. With the emergence of the orthogonal wave-forms, the performances of the UWB communication system will be more interesting in terms of BER and data rate. In this paper, two kinds of improvement are proposed. The first improvement permits us to decrease the Bit Error Rate using the original waveforms. The second allows improving the data rate via novel modulation method. The last parameter study, in this paper, concerns the problem of synchronization between the different users. We will study the performances of the proposed system in multiusers environment in synchronous and asynchronous cases. In the first stage, the theoretical and simulation results will be presented for the proposed system. The simulation results obtained by comparing the classic UWB system and the proposed system show that our solution gives good performances in terms of BER and data rate. The theoretical results of BER values will be given for our proposed solution. In the second stage, we will compute BER values for different jitter effects. Theses studies report theoretical and simulation performances evaluation in the case of two
文摘The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their service offerings. These generations of mobile networks were initially invented to meet the requirements of the above-mentioned applications. However, as the requirements in these applications continue to increase, new mobile technologies such as 5G (fifth generation), 5G and beyond (B5G, beyond fifth generation), and 6G (sixth generation) are still progressing and being experimented. These networks are very heterogeneous generations of mobile networks that will have to offer very high throughput per user, good energy efficiency, better traffic capacity per area, improved spectral efficiency, very low latency, and high mobility. To meet these requirements, the radio interface of future mobile networks will have to be flexible and rationalized the available frequency resources. Therefore, new modulation methods, access techniques and waveforms capable of supporting these technological changes are proposed. This review presents brief descriptions of the types of 5G, B5G, and 6G waveforms. The 5G consists of OFDM including its transmission techniques: generalized frequency division multiplexing (GFDM), filter bank based multi-carrier (FBMC), universal filtered multi-carrier (UFMC), and index modulation (IM). Meanwhile, the 6G covers orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM) and orthogonal time sequence multiplexing (OTSM). The networks’ potentialities, advantages, disadvantages, and future directions are outlined.
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
文摘The 5G(fifth generation)mobile communications aim to support a large versatile type of services with different and often diverging requirements,which has posed significant challenges on the design of 5G systems.Modulation and waveforms are one of the key physical layer componentsthat determine the system throughput,reliability,and complexity,therefore their design is critical in meeting the variety requirements of 5G services.A comprehensive overview was presented on the modulation and waveforms that have been considered for their potential application to 5G in the literature,identifying their design requirements,and discussing their advantages to meet such requirements.Additional considerations that extend our view to higher layer aspects and air interface harmonization are provided as the final remarks.As a result of this article,it is hopeful to draw greater attentions from the readers on this important topic,and trigger further studies on the promising modulation and waveform candidates.
基金National Natural Science Foundation of China(Grant Nos.51807140 and 51690183).
文摘An analytical evaluation method for output waveform quality of space vector pulse width modulation(PWM)strategies applied in neutral⁃point⁃clamped three⁃level converter(3L⁃NPC)is proposed in this paper.Low frequency error caused by neutral point voltage ripple and high frequency error introduced by space vector synthesis were both taken into account,and the unified error model of output current ripple was established.By taking continuous and discontinuous modulation strategies as examples,the unified error model was validated through Fourier analysis of the experimental results.The proposed evaluation method will be helpful for the switching sequence optimization and the modulation strategy selection.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61007007 and 61101110)the Foundation of Beijing Municipal Committee of CPC Organization Department (Grant No. 2012D005002000001)
文摘In this paper,we present a novel ultrashort pulse shaper based on complex-modulated long-period-grating coupler(CM-LPGC).Temporal rectangular waveform with 2-ps full width at half maximum(FWHM) is obtained by transforming the input Gaussian pulse.Tolerances of the CM-LPGC-based shaper to various non-ideal excitation conditions and fabricating errors are investigated.Results confirm that CM-LPGC is stable and suitable for optical pulse shaping operation.