期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
As-cast structure and tensile properties of AZ80 magnesium alloy DC cast with low-voltage pulsed magnetic field 被引量:9
1
作者 罗天骄 冀焕明 +4 位作者 崔杰 赵福泽 冯小辉 李应举 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2165-2171,共7页
The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC ... The effects of a low-voltage pulsed magnetic field on the solidified structure and mechanical properties of DC casting AZ80 magnesium alloy were investigated.The results showed that the solidified structure of the DC casting AZ80 magnesium alloy was refined obviously by the low-voltage pulsed magnetic field and significant grain refinement in the DC casting ingot of AZ80 magnesium alloy was achieved.Meanwhile,the morphology of the dentritic in the DC casting ingot was transformed from coarse dentritic to fine rosette with the application of low-voltage pulsed magnetic field.The ability of deformation of the ingot was enhanced and especially the plasticity of the ingot center after upsetting was improved greatly by more than 80%after deformation. 展开更多
关键词 AZ80 magnesium alloy DC casting pulsed magnetic field grain refinement
下载PDF
Grain refinement of as-cast superalloy IN718 under action of low voltage pulsed magnetic field 被引量:13
2
作者 李应举 马晓平 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1277-1282,共6页
The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pul... The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains. 展开更多
关键词 SUPERALLOY grain refinement low voltage pulsed magnetic field cooling rate SUPERHEATING
下载PDF
Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation 被引量:5
3
作者 陈航 接金川 +2 位作者 付莹 马红军 李廷举 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1295-1300,共6页
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul... The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn. 展开更多
关键词 direct current pulsed magnetic field pure aluminum inoculation grain refinement solidification micro structure
下载PDF
INFLUENCE OF PULSED MAGNETIC FIELD ON MICROSTRUC-TURES AND MACRO-SEGREGATION IN 2124 Al-ALLOY 被引量:20
4
作者 C.Y.Ban,J.Z.Cui,Q.X.Ba,G.M.Lu and B.J.ZhangP.O. Box 317, The Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China Manuscript received 10 October 2001 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第4期380-384,共5页
The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidifi... The structures and macro-segregation of 2124 Al-alloy were studied when a pulsed magnetic field (PMF) was applied during solidification. It is found through experi-ments that a remarkable change occurs in the solidification structures of 2124 Al-alloy under pulsed magnetic field. The eutectic phase at grain boundaries change from thick continuous eutectic network to thin discontinuous one, and the distribution of solute elements was also homogenized. The typical negative segregation phenomenon of Cu in common solidification condition was restrained, and the segregation of Mg decreased. 展开更多
关键词 aluminium alloy pulsed magnetic field MICROSTRUCTURE segrega-tion
下载PDF
Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field 被引量:15
5
作者 汪彬 杨院生 孙明礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1685-1690,共6页
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pu... The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms. 展开更多
关键词 AZ31 magnesium alloy grain refinement pulsed magnetic field solidified microstructure
下载PDF
Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field 被引量:12
6
作者 LI Qiu-shu LI Hai-bin ZHAI Qi-jie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期69-72,共4页
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica... To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity. 展开更多
关键词 pulsed magnetic field austenitic stainless steel solidification structure solidification behavior
下载PDF
Sterilization of Escherichia coli cells by the application of pulsed magnetic field 被引量:9
7
作者 LIMei QUJiu-hui PENGYong-zhen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第2期348-352,共5页
The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer s... The inactivation of microorganisms by pulsed magnetic field was studied. It was improved that the application of electromagnetic pulses evidently causes a lethal effect on E. coli cells suspended in phosphate buffer solution Na 2HPO 4/NaH 2PO 4(0 334/0 867 mmol/L). Experimental results indicated that the survivability(N/N 0; where N 0 and N are the number of cells survived per mill il iter before and after electromagnetic pulses application, respectively) of E. coli decreased with magnetic field intensity B and treatment time t. It was also found that the medium temperatures, the frequencies of pulse f, and the initial bacterial cell concentrations have determinate influences in destruction of E. coli cells by the application of magnetic pulses. The application of an magnetic intensity B=160 mT at pulses frequency f=62 kHz and treatment time t=16 h result in a considerable destruction levels of E. coli cells (N/N 0=10 -4 ). Possible mechanisms involved in sterilization of the magnetic field treatment were discussed. In order to shorten the treatment time, many groups of parallel inductive coil were used. The practicability test showed that the treatment time was shortened to 4 h with the application of three groups of parallel coil when the survivability of E.coli cells was less than 0 01%; and the power consumption was about 0 2 kWh /m 3. 展开更多
关键词 Escherichia coli bacteria pulsed magnetic field induced current cell membrane
下载PDF
Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field 被引量:7
8
作者 Wenchao Duan Siqi Yin +5 位作者 Wenhong Liu Zhong Zhao Kun Hu Ping Wang Jianzhong Cui Zhiqiang Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期166-182,共17页
For obtaining the finer grains of magnesium alloy,a novel combined pulsed magnetic field with different initial phases,also called out-ofphase pulsed magnetic field(OPPMF),was applied to study the solidification struc... For obtaining the finer grains of magnesium alloy,a novel combined pulsed magnetic field with different initial phases,also called out-ofphase pulsed magnetic field(OPPMF),was applied to study the solidification structure of AZ80 magnesium alloy.The numerical simulation was simultaneously conducted to investigate the refinement mechanisms.The experimental results showed that the macrostructure could be effectively refined by applying external magnetic field.Meanwhile,finer grains were obtained with the higher current intensity.However,the increase of current intensity could only refine the grains to about 0.5 mm.Furthermore,compared to a single pulsed magnetic field(PMF)and alternating series of OPPMF(Connection II),a finer structure was observed when the consecutive series of OPPMF(Connection I)was imposed.In contrast with a single PMF and Connection II,the numerical results showed that the greater axial Lorentz force was obtained under the Connection I,generating the stronger forced flow in the melt.It is believed that abundant nuclei could detach from the mold wall and move faster into the interior melt due to the stronger forced flow;besides,the lower superheat and greater temperature uniformity in bulk melt were realized,accounting for the finest structures under the Connection I. 展开更多
关键词 Out-of-phase pulsed magnetic field Magnesium alloy Grain refinement Numerical simulation Forced flow
下载PDF
Soft magnetic properties of amorphous Fe_(52)Co_(34)Hf_7B_6Cu_1 alloy treated by pulsed magnetic field and annealing 被引量:7
9
作者 谷月 晁月盛 张艳辉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期477-480,共4页
The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then... The crystallization, microstructure, and soft magnetic properties of Fe52Co34Hf7B6Cul alloy are studied. Amorphous Fe52Co34Hf7B6Cul alloys are first treated by a pulsed magnetic field with a medium frequency, and then annealed at 100 ℃-400 ℃ for 30 min in a vacuum. The rise in temperature during the treatment by a pulsed magnetic field is measured by a non-contact infrared thermometer. The soft magnetic properties of specimens are measured by a vibrating sample magnetometer (VSM). The microstructure changes of specimens are observed by a MSssbauer spectroscopy and transmission electron microscope (TEM). The results show the medium-frequency pulsating magnetic field will pro- mote nanocrystallization of the amorphous alloy with a lower temperature rise. The nanocrystalline phase is (α-Fe(Co) with bcc crystal structure, and the grain size is about 10 nm. After vacuum annealing at 100 ℃ for 30 min, scattering nanocrystalline phases become more uniform, the coercive force and the saturation magnetization of the specimens are 41.98 A/m and 185.15 emu/g. 展开更多
关键词 amorphous alloys pulsed magnetic field vacuum annealing NANOCRYSTALLIZATION
下载PDF
Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field 被引量:14
10
作者 汪彬 杨院生 +1 位作者 马晓平 童文辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期283-288,共6页
The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pu... The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pulsed magnetic field and the average grain size is refined to 260?? under the optimal processing conditions.A mathematical model was built to describe the interaction of the electromagnetic-flow fields during solidification with ANSYS software.The pulsed electric circuit was first solved and then it is substituted into the magnetic field model.The fluid flow model was solved with the acquired electromagnetic force.The effects of pulse voltage frequency on the current wave and on the distribution of magnetic and flow fields were numerically studied.The pulsed magnetic field increases melt convection,which stirs and fractures the dendritic arms into pieces.These broken pieces are transported into the bulk liquid by the liquid flow and act as nuclei to enhance grain refinement.The Joule heat effect produced by the electric current also participates in the microstructural refinement. 展开更多
关键词 pulsed magnetic field numerical simulation pure Mg microstructure refinement
下载PDF
Effects of pulsed magnetic field on density reduction of high flow velocity plasma sheath 被引量:1
11
作者 Jiahao XU Xiaoping LI +1 位作者 Donglin LIU Yuan WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期53-66,共14页
A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath.Taking the typical parameters of plasma sheath at th... A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath.Taking the typical parameters of plasma sheath at the height of 71 km as an example,the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field,as well as the effect of self-electric field on the distribution of plasma density,are studied.The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath.Meanwhile,the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System(GPS)signal.Besides,the location of density reduction area provides a reference for the appropriate location of antenna.The time evolution of plasma density shows that the effective density reduction time can reach 62%of the pulse duration,and the maximum reduction of plasma density can reach 55%.Based on the simulation results,the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed.Furthermore,the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field.However,the quasi neutral assumption of plasma in the flow field is not appropriate,because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density,which cannot be ignored.The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles. 展开更多
关键词 pulsed magnetic field plasma sheath communication blackout
下载PDF
Regulation of the density distribution of a strongly dissipative plasma by a pulsed magnetic field
12
作者 Wenbin LING Chenggang JIN +2 位作者 Jian GUAN Yuye ZHANG Peng E 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期50-58,共9页
A pulsed transverse magnetic field with pulse width of 12 ms and magnitude of 2 T was used to modify the density distribution of a weakly-ionized plasma flow with strong collisions between the charged particles and ne... A pulsed transverse magnetic field with pulse width of 12 ms and magnitude of 2 T was used to modify the density distribution of a weakly-ionized plasma flow with strong collisions between the charged particles and neutrals.The morphology of the plasma is changed substantially,with the density increased upstream and decreased downstream.Meanwhile,the plasma toward the axis contracts laterally and gradually converges to a collimated flow.In addition,a drift wave is observed to be excited in the inhomogeneous plasma by the magnetic field. 展开更多
关键词 pulsed magnetic field weakly-ionized plasma plasma dynamics drift instability
下载PDF
Effect of wide-spectrum pulsed magnetic field on grain refinement of pure aluminium
13
作者 Ya-ming Bai Gang Li +2 位作者 Ya-wei Sun Yong-yong Gong Qi-jie Zhai 《China Foundry》 SCIE CAS CSCD 2023年第1期40-48,共9页
A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studi... A wide-spectrum pulsed magnetic field(WSPMF)was obtained by adjusting the number of current pulses and the pulse interval between adjacent pulses.The effect of WSPMF on the grain refinement of pure aluminium was studied.The distribution of electromagnetic force and flow field in the melt under the WSPMF was simulated to reveal the grain refining mechanism.Results show that the grain refinement is attributed to the combined effect of the melt flow and oscillation under a WSPMF.When the pulse interval is 5 ms,the extreme value of electromagnetic force is the highest,and the size of the crystal nucleus is 0.35 mm.In the case of similar flow rates,the grain size gradually decreases as the pulse interval increases.The range of the harmonic frequency of the magnetic field gradually expands with the increase of the pulse interval,which can provide more energy for nucleation at the solid-liquid interface and promote nucleation. 展开更多
关键词 wide-spectrum pulsed magnetic field forced flow grain refinement frequency components
下载PDF
Research on the grain refinement under pulsed magnetic field
14
作者 ZHANG Yongjie~(1)) and HUA Junshan~(2)) 1) Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) The Key Laboratory of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University,Shenyang 110004,Liaoning,China 《Baosteel Technical Research》 CAS 2010年第S1期24-,共1页
In this paper,the principle of Pulsed Magnetic Field(PMF) force was analyzed through mathematical analyses.By theoretical analysis and calculation,the results show that the great electromagnetic force is made in the m... In this paper,the principle of Pulsed Magnetic Field(PMF) force was analyzed through mathematical analyses.By theoretical analysis and calculation,the results show that the great electromagnetic force is made in the melt under pulsed magnetic field,as well as changing its direction in different places of melt at the same time.It enforces the crystallizing nucleus and brittle crystallite to fragment in the solidification processing.From the point of view,one of the main factors of grain refinement is that the fragmentations occur under a pulsed magnetic field by preliminary judgement. The feasibility of application in the metallurgical industry under PMF was discussed through comparing the results of grain refinement under EMS.According to the theoretic calculation,the power consumption under EMS is 5 -8 times the amount under PMF,when both of magnetic flux density B are 0.07T.That is to say,the better effect on grain refining can be obtained under PMF,compared with EMS,even in the lower power consumption.The solidification experiments of Sn-20%Pb alloy are conducted under the same experimental conditions that the magnetic intensity is 0.07T in the center of the crucible,it also shows that PMF has a better effect on grain refining than EMS. Combined with the continuous casting process,the influence of pulsed parameters and the metallurgical effects with applying PMF at different solidification stages was investigated.There are different grain refining effects under PMF in different solidification stages,and there are different grain refining effects under PMF in different PMF parameters.For the Sn-20%Pb alloy or silicon steel,it is more effective during the initial stage,in which the pulse frequency is 5Hz.For the Sn-20%Pb alloy,the average grain size ofβphase is the smallest,when applying the PMF during the temperature of melt decreasing from 201℃to 184℃.Further investigation of the specified technique parameters for industrial applications are required. 展开更多
关键词 pulsed magnetic field(PMF) grain refinement solidification structure
下载PDF
Modelling the unsteady melt flow under a pulsed magnetic field
15
作者 陈国军 张永杰 杨院生 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期333-337,共5页
A numerical model for the unsteady flow under a pulsed magnetic field of a solenoid is developed, in which magnetohydrodynamic flow equations decouple into a transient magnetic diffusion equation and unsteady Navier–... A numerical model for the unsteady flow under a pulsed magnetic field of a solenoid is developed, in which magnetohydrodynamic flow equations decouple into a transient magnetic diffusion equation and unsteady Navier–Stokes equations in conjunction with two equations of the k–ε turbulent model. A Fourier series method is used to implement the boundary condition of magnetic flux density under multiple periods of a pulsed magnetic field (PMF). The numerical results are compared with the theoretical or experimental results to validate the model under a time-harmonic magnetic field; it is found that the toroidal vortex pair is the dominating structure within the melt flow under a PMF. The velocity field of a molten melt is in a quasi-steady state after several periods; changing the direction of the electromagnetic force causes the vibration of the melt surface under a PMF. 展开更多
关键词 pulsed magnetic field Fourier series velocity field turbulent model
下载PDF
DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE 被引量:3
16
作者 H.P. Yu C.F. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期277-283,共7页
The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on th... The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts. 展开更多
关键词 magnetic pulse compaction copper powder compaction density electromagnetic forming
下载PDF
A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments 被引量:1
17
作者 胡广月 梁亦寒 +4 位作者 宋法伦 袁鹏 王雨林 赵斌 郑坚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第2期134-140,共7页
A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into ... A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field. 展开更多
关键词 magnetized laser plasma pulsed strong magnetic field
下载PDF
Gradient Microstructure of K4169 Superalloy Prepared by Low Voltage Pulsed Magnetic Field Combined with Directional Solidification 被引量:1
18
作者 Li Yingju Zhang Kuiliang +3 位作者 Zhu Cheng Zheng Ce Feng Xiaohui Yang Yuansheng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第8期2152-2155,共4页
The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse gra... The influence of the low voltage pulsed magnetic field(LVPMF)on the microstructure transition of K4169 superalloy was investigated.The gradient microstructure of K4169 superalloy composed of columnar grains,coarse grains,and fine grains was prepared through the combined method of LVPMF with directional solidification,which provided a new approach for the preparation of superalloy with gradient microstructure.The distribution of the Lorentz force and flow field under LVPMF effect was simulated,and therefore the microstructure transition mechanism was revealed.Results show that the microstructure transition should be attributed to the coupling effects of the Lorentz force and forced convection. 展开更多
关键词 pulsed magnetic field gradient microstructure SUPERALLOY Lorentz force forced convection
原文传递
Interface strengthening for thermal sprayed WC-10Co4Cr coating subjected to pulsed magnetic treatment 被引量:1
19
作者 Cheng-Kai Qian Qu Liu +2 位作者 Heng Wang Ke-Jian Li Zhi-Peng Cai 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期780-795,共16页
The reliability of the coated industry components demands ideal fatigue properties of the coating,and it is mainly determined by the performance of the interfaces.In this study,pulsed magnetic treatment(PMT)was applie... The reliability of the coated industry components demands ideal fatigue properties of the coating,and it is mainly determined by the performance of the interfaces.In this study,pulsed magnetic treatment(PMT)was applied to the thermal sprayed WC-10Co4Cr coating,and the fatigue lifetime of the coated bolt increased by 219.82%under an imitation of the operating mode condition.Scratch tests further proved that both the adhesion and cohesion strength were improved after PMT,and they benefit from the interface strengthening effects.The formation of coherent WC/Co interfaces was characterized by in-situ transmission electron microscopy(TEM),and the molecular dynamic simulations indicate that the work of separation of these interfaces is much higher than the original disordered ones.Residual stress was relaxed and distributed more homogeneously after PMT,and it mainly contributes to the coating/substrate strengthening.This work provides a new post-treatment method focusing on the interfaces in the WC-based coating and gives insight into its mechanism so that it is hopeful to be applied to other kinds of coatings. 展开更多
关键词 Cemented carbide coating pulsed magnetic treatment Interface strengthening Fatigue properties Adhesion strength
原文传递
Mechanism and application of mechanical property improvements in engineering materials by pulsed magnetic treatment:A review
20
作者 Zhipeng CAI Chengkai QIAN +3 位作者 Xu ZHANG Ning DAI Yao WU Wen JI 《Friction》 SCIE EI CAS CSCD 2024年第10期2139-2166,共28页
Pulsed magnetic treatment(PMT)has been adopted as an effective strengthening method for engineering materials and components in recent years,and the development of its application depends on the comprehensive understa... Pulsed magnetic treatment(PMT)has been adopted as an effective strengthening method for engineering materials and components in recent years,and the development of its application depends on the comprehensive understanding of the nature of PMT.The deep mechanism was thought initially to be the magnetostrictive effect,while further investigation found that the magnetic field could lead to the change of the defect states in the crystal,which is called the magnetoplastic effect.Due to the complexity of the engineering materials,manifestations of the magnetoplastic effect become more diverse,and they were reviewed in the form of microstructure homogenization and interfacial stabilization.Further,the mechanism of the magnetoplastic effect was discussed,focusing on the changes in the spin states under the external magnetic field.Microstructure modifications could also alter material performances,especially the residual stress,plasticity,and fatigue properties.Therefore,PMT with specific parameters can be utilized to obtain an ideal combination of microstructure,residual stress,and mechanical properties for better service performance of different mechanical parts,and its applications on machining tools and bearings are perfect examples.This work reviews the effect of PMT on the microstructure and properties of different materials and the mechanism,and it also summarizes the fundamental applications of PMT on essential mechanical parts. 展开更多
关键词 pulsed magnetic treatment wear resistance microstructure modifications mechanical properties magnetoplastic effect
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部