期刊文献+
共找到426篇文章
< 1 2 22 >
每页显示 20 50 100
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
1
作者 全汝岱 张进成 +3 位作者 张雅超 张苇航 任泽阳 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期145-148,共4页
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct... Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively. 展开更多
关键词 GAN IS in of Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by pulsed metal organic chemical vapor deposition by on
下载PDF
Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
2
作者 吉泽生 汪连山 +5 位作者 赵桂娟 孟钰淋 李方政 李辉杰 杨少延 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期420-425,共6页
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re... We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress. 展开更多
关键词 pulsed metal organic chemical vapor deposition growth mode MORPHOLOGY crystalline quality
下载PDF
Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition
3
作者 张雅超 周小伟 +6 位作者 许晟瑞 陈大正 王之哲 汪星 张金风 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期796-801,共6页
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy... Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. 展开更多
关键词 HETEROSTRUCTURE InGaN channel pulsed metal organic chemical vapor deposition
下载PDF
Pulsed metal organic chemical vapor deposition of InAlN-based heterostructures and its application in electronic devices 被引量:3
4
作者 Yue Hao Junshuai Xue Jincheng Zhang 《Chinese Science Bulletin》 SCIE EI CAS 2014年第12期1228-1234,共7页
As a promising group III-nitride semiconductor material,InAlN ternary alloy has been attracted increasing interest and widespread research efforts for optoelectronic and electronic applications in the last 5 years.Fol... As a promising group III-nitride semiconductor material,InAlN ternary alloy has been attracted increasing interest and widespread research efforts for optoelectronic and electronic applications in the last 5 years.Following a literature survey of current status and progress of InAlNrelated studies,this paper provides a brief review of some recent developments in InAlN-related III-nitride research in Xidian University,which focuses on innovation of the material growth approach and device structure for electronic applications.A novel pulsed metal organic chemical vapor deposition(PMOCVD)was first adopted to epitaxy of InAlN-related heterostructures,and excellent crystalline and electrical properties were obtained.Furthermore,the first domestic InAlN-based high-electron mobility transistor(HEMT)was fabricated.Relying on the PMOCVD in combination with special GaN channel growth approach,high-quality InAlN/GaN double-channel HEMTs were successfully achieved for the first time.Additionally,other potentiality regarding to AlGaN channel was demonstrated through the successful realization of nearly lattice-matched InAlN/AlGaN heterostructures suitable for high-voltage switching applications.Finally,some advanced device structures and technologies including excellent work from several research groups around the world are summarized based on recent publications,showing the promising prospect of InAlN alloy to push group III-nitride electronic device performance even further. 展开更多
关键词 化学气相沉积 电子应用 电子器件 异质结构 有机金属 脉冲 高电子迁移率晶体管 西安电子科技大学
原文传递
In-situ wafer bowing measurements of GaN grown on Si(111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 被引量:1
5
作者 杨亿斌 柳铭岗 +12 位作者 陈伟杰 韩小标 陈杰 林秀其 林佳利 罗慧 廖强 臧文杰 陈崟松 邱运灵 吴志盛 刘扬 张佰君 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期362-366,共5页
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r... In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. 展开更多
关键词 stresses metal organic chemical vapor deposition wafer bowing in-situ reflectivity mapping
下载PDF
Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 被引量:1
6
作者 黎明 王勇 +1 位作者 王凯明 刘纪美 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期597-601,共5页
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ... High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated. 展开更多
关键词 AlGaN/GaN HEMTs low-leakage current metal organic chemical vapor deposition Mg-dopedbuffer layer
下载PDF
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition 被引量:1
7
作者 任鹏 韩刚 +6 位作者 付丙磊 薛斌 张宁 刘喆 赵丽霞 王军喜 李晋闽 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期145-149,共5页
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit... CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature. 展开更多
关键词 of or IS as RATE GAN Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with metal organic chemical vapor deposition by with
下载PDF
High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application
8
作者 Xin Li Yu Zhao +6 位作者 Min Xiong Qi-Hua Wu Yan Teng Xiu-Jun Hao Yong Huang Shuang-Yuan Hu Xin Zhu 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期52-55,共4页
High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time o... High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time on the surface morphology, crystalline quality and electrical properties of the InSb epilayer is systematically investigated using Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction, Hall measurement and contactless sheet resistance measurement. It is found that a 2-μm-thick InSb epilayer grown at 450℃ with a Ⅴ/Ⅲ ratio of 5 and an indium pre-deposition time of 2.5s exhibits the optimum material quality, with a root-meansquare surface roughness of only 1.2 nm, an XRD rocking curve with full width at half maximum of 358 arcsec and a room-temperature electron mobility of 4.6 × 10~4 cm^2/V·s. These values are comparable with those grown by molecular beam epitaxy. Hall sensors are fabricated utilizing a 600-nm-thick InSb epilayer. The output Hall voltages of these sensors exceed 10 mV with the input voltage of 1 V at 9.3 mT and the electron mobility of 3.2 × 10~4 cm^2/V·s is determined, which indicates a strong potential for Hall applications. 展开更多
关键词 HALL Sensor APPLICATION metal organic chemical vapor deposition GALLIUM ARSENIDE
下载PDF
High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal–organic chemical vapor deposition
9
作者 王连锴 刘仁俊 +4 位作者 吕游 杨皓宇 李国兴 张源涛 张宝林 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期114-118,共5页
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic... Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. 展开更多
关键词 crystal growth metalorganic chemical vapor deposition thin films
下载PDF
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
10
作者 张杨 王青 +5 位作者 张小宾 刘振奇 陈丙振 黄珊珊 彭娜 王智勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期167-171,共5页
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the... We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum. 展开更多
关键词 by on it of GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by metal organic chemical vapor deposition with High Efficiency is THAN Ge GaAs with cell that
下载PDF
Improved Semipolar(11(2|-)2) GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN_x Interlayer
11
作者 许晟瑞 赵颖 +3 位作者 姜腾 张进成 李培咸 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期150-152,共3页
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r... The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN. 展开更多
关键词 GaN Quality Grown on m-Plane Sapphire Substrates by metal organic chemical vapor deposition Using Self-Organized SiN_x Interlaye in of is by Improved Semipolar on
下载PDF
Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal–organic chemical vapor deposition
12
作者 邢海英 徐章程 +2 位作者 崔明启 谢玉芯 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期538-540,共3页
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is... Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results. 展开更多
关键词 GAMNN PHOTOLUMINESCENCE MAGNETISM metal-organic chemical vapor deposition
下载PDF
Some Properties of Manganese Oxide (Mn-O) and Lithium Manganese Oxide (Li-Mn-O) Thin Films Prepared via Metal Organic Chemical Vapor Deposition (MOCVD) Technique
13
作者 Kabir O. Oyedotun Marcus Adebola Eleruja +7 位作者 Bolutife Olofinjana Olumide Oluwole Akinwunmi Olusoji O.Ilori Ezekiel Omotoso Emmanuel. Ajenifuja Adetokunbo T. Famojuro Eusebius I. Obianjuwa Ezekiel Oladele Bolarlnwa Ajay 《材料科学与工程(中英文B版)》 2015年第5期231-242,共12页
关键词 金属有机化学气相沉积 锂锰氧化物 薄膜沉积 MOCVD 制备 技术 性质 紫外可见光谱
下载PDF
Fabrication and characterization of iron and iron carbide thin films by plasma enhanced pulsed chemical vapor deposition 被引量:1
14
作者 Yulian HU Xu TIAN +4 位作者 Qipeng FAN Zhengduo WANG Bowen LIU Lizhen YANG Zhongwei LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第10期54-60,共7页
A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-ter... A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe1-xCx) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated. 展开更多
关键词 Fe and Fe1-xCx FILMS H2 plasma pulsed chemical vapor deposition
下载PDF
1.0μm gate-length InP-based InGaAs high electron mobility transistors by mental organic chemical vapor deposition 被引量:1
15
作者 高成 李海鸥 +1 位作者 黄姣英 刁胜龙 《Journal of Central South University》 SCIE EI CAS 2012年第12期3444-3448,共5页
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D... InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD. 展开更多
关键词 metamorphic device mental organic chemical vapor deposition high electron mobility transistors InP substrate INGAAS
下载PDF
Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition 被引量:2
16
作者 李海鸥 黄伟 +2 位作者 邓泽华 邓小芳 刘纪美 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期530-533,共4页
The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported.... The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- ram. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6, Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device. 展开更多
关键词 GAAS METAMORPHIC high electron mobility transistor metal-organic chemical vapour deposition
下载PDF
Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition 被引量:2
17
作者 林志宇 张进成 +7 位作者 周昊 李小刚 孟凡娜 张琳霞 艾姗 许晟瑞 赵一 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期403-407,共5页
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)... In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper. 展开更多
关键词 GAN A1N buffer layer metal-organic chemical vapour deposition threading dislocations
下载PDF
CHEMICAL VAPOR DEPOSITION OF DIFFUSION BARRIERS FOR ADVANCED METALLIZATION
18
作者 Lu Jiong-Ping (Silicon Technology Research, Texas Instruments, Dallas, USA) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期5-9,共5页
Metalization is widely used in integrated circuit devices to connect millions of devices together. The success of metallization depends strongly on diffusion barrier technology, due to the interactions of metals with ... Metalization is widely used in integrated circuit devices to connect millions of devices together. The success of metallization depends strongly on diffusion barrier technology, due to the interactions of metals with surrounding materials. As device dimension further shrinks, diffusion barrier technology is facing more challenges and opening up new opportunities, particularly for chemical vapor deposition (CVD) process technology. CVD is attracting increased attention in advanced metallization mainly due to its capability in producing conformal thin films. In this review, we will focus our discussion on CVD processes for three most important classes of diffusion barriers: Ti, W and Ta-based diffusion banters. Examples from current literature will be examined. 展开更多
关键词 chemical vapor deposition diffusion bather TIN TiSiN WN TAN metalLIZATION integrated circuits
下载PDF
Nonpolar a-plane light-emitting diode with an in-situ SiN_x interlayer on r-plane sapphire grown by metal-organic chemical vapour deposition
19
作者 方浩 龙浩 +5 位作者 桑立雯 齐胜利 熊畅 于彤军 杨志坚 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期639-642,共4页
We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the c... We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiNx interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm2/(V· s) and 460 Ω/respectively. Owing to the significant effect of the SiNx interlayer, a-plane LEDs are realized. Electrolurninescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA. 展开更多
关键词 metal-organic chemical deposition III-NITRIDES NONPOLAR light emitting diodes
下载PDF
Photoluminescence and lasing properties of InAs/GaAs quantum dots grown by metal-organic chemical vapour deposition
20
作者 梁松 朱洪亮 +7 位作者 潘教青 赵玲娟 王鲁峰 周帆 舒惠云 边静 安欣 王圩 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4300-4304,共5页
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow... Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers. 展开更多
关键词 metal-organic chemical vapour deposition InAs/GaAs quantum dots laser
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部