Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effe...Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.展开更多
Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classificati...Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.展开更多
Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the ...A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the circuit is described and analyzed. The circuit is realized in 0.6μm CMOS process,and the simulation results testify to the possibility of sub-retinal implantation.展开更多
The research presented here is focused on the vibration condition of a small volume solder solder ball,which is placed on the surface of a soldering pad and is exerted a pulse modulated continuous wave laser heat sour...The research presented here is focused on the vibration condition of a small volume solder solder ball,which is placed on the surface of a soldering pad and is exerted a pulse modulated continuous wave laser heat source. Finite element method is applied to analyzed the temperature field in the solder ball, and experi- ment is conducted to test the vibration. the results show that,that, the temperature field flucturates with the same frequency as that of the laser pulse, which in turn causes a forced vibration of the same frequency in the liquid solder ball.展开更多
The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequenc...The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.展开更多
A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work conditi...A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.展开更多
Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error p...Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.展开更多
A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r...A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.展开更多
This paper gives a spectrum expression which is simple and has a clear physical conception for pulse frequency modulation signal, and has been confirmed by an experiment simultaneously.
The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of t...The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.展开更多
This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The propos...This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The proposed SUPWM scheme can achieve an output voltage of(2N+1)(where N is the number of submodules in each arm)levels,which is the same as that of the carrier-phase-shifted PWM(CPSPWM)scheme.Meanwhile,the proposed SUPWM scheme can alleviate the uneven loss distributions between the left leg and right leg in FBSMs of the hybrid MMC.Moreover,the capacitor voltages of the sub-modules can be well balanced without complicated closed-loop voltage balancing controllers.The validity of the proposed SUPWM scheme is verified by both the simulated and experimental results.展开更多
The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. ...The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.展开更多
A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecon...A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecond voltage excited pulsed discharge.The temporal evolution of discharge current density and electron density during PM RF discharge burst was investigated to demonstrate the discharge ignition characteristics with or without the pulsed discharge.Under the assistance of pulsed discharge,the electron density in RF discharge burst reaches the magnitude of 1.87 x 1017-3m within 10 RF cycles,accompanied by the formation of sheath structure.It proposes that the pulsed discharge plays an important role in the ignition of PM RF discharge burst.Furthermore,the dynamics of PM RF glow discharge arc demonstrated by the spatiotcmporal evolution of the election density with and without pulsed discharge.The spatial profiles of electron density,electron energy and electric field at specific time instants arc given to explain the assistive role of the pulsed discharge on PM RF discharge ignition.展开更多
By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulati...By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.展开更多
From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive ...From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.展开更多
The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed disc...The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model.The computational results show that by increasing the duty cycle or voltage modulation rate(VMR).the discharge eventually becomes fully continuous and PCFP can no longer he observed.In the transition process,the distributions of the electric field,electron energy probability function(EEPF)and plasma density are discussed according to the simulation data,showing different discharge structures.The simulations indicate that many high-energy electrons with electron energy larger than 20eV and low-energy electrons with electron energy less than 3eV could he generated in a pulsed microwave discharge,together with a reversal electric field formed in the anode sheath when PCFP occurs.However,only medium-energy electrons could be observed in a fully continuous discharge.Therefore,by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.展开更多
文摘Modulated electro-hyperthermia (mEHT) is one of the novel oncological treatments with many preclinical and clinical results showing its advantages. The basis of the method is the synergy of thermal and nonthermal effects, similar to the thermal action of conventional hyperthermia combined with ionizing radiation (radiotherapy). The electric field and the radiofrequency current produced both the thermal and nonthermal processes. The thermal effects produce the elevated temperature as a thermal background to optimize the nonthermal impacts. The low frequency amplitude modulation ensures accurate targeting and promotes immunogenic cell death to develop the tumor specific memory T cells disrupting the malignant cells by immune surveillance. This process (abscopal effect) works like a vaccination. The low frequency amplitude modulation is combined in the new method with the high power pulses for short time, increasing the tumor distortion ability of the electric field. The new modulation combination has much deeper penetration triplicating the active thickness of the effective treatment. The short pulse absorption increases the safety and decreases the thermal toxicity of the treatment, making the treatment safer. The increased power allows for reduced treatment time with the prescribed dose.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project(2018-JCJQ-ZQ-023)the Hunan Provincial Natural Science Foundation of Innovation Research Group Project(2019JJ10004)。
文摘Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.
文摘A pulse frequency modulation(PFM) circuit for retinal prosthesis,which generates electrical pulses with frequency proportional to the intensity of incident light, is presented. The fundamental characteristic of the circuit is described and analyzed. The circuit is realized in 0.6μm CMOS process,and the simulation results testify to the possibility of sub-retinal implantation.
文摘The research presented here is focused on the vibration condition of a small volume solder solder ball,which is placed on the surface of a soldering pad and is exerted a pulse modulated continuous wave laser heat source. Finite element method is applied to analyzed the temperature field in the solder ball, and experi- ment is conducted to test the vibration. the results show that,that, the temperature field flucturates with the same frequency as that of the laser pulse, which in turn causes a forced vibration of the same frequency in the liquid solder ball.
基金supported by National Natural Science Foundation of China(Nos.11475043 and 11375042)
文摘The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(s)- gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge.
文摘A hybrid control strategy has been designed and developed for the electro-hydraulic posi-tion servo control system with generalized Pulse code modulation (GPCM), which is suitable for the area where the work condition is poor and a large flow rate is required. It is difficult to control the GPCM system because the system is discrete. With consideration of the stability and speediness of the GPCM position servo control system, a control strategy is developed through the theoretical and ex-perimental analyses. The control strategy integrates the merits of Bang-Bang control, PID control and fuzzy control. With this hybrid control strategy, the electro hydraulic control system has good per-formances, and the servo control is carried out with GPCM through on-off valves.
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
基金Supported by the National Natural Science Foundation of China(No.41074090)Henan Science and Technology Key Project(No.092102210360)+1 种基金Henan Provincial Department of Education Science ang Technology Key Project(No.13A510330)Doctorate Program of Henan Polytechnic University(No.B2009-27)
文摘Traditional chaotic pulse position modulation(CPPM)system has many drawbacks.It introduces delay into the feedback loop,which will lead to divergence of chaotic map easily.The wrong decision of data will cause error propagation.Mismatch of parameters and synchronization error between the receiver and transmitter will arouse high bit error rate.To solve these problems,a demodulation algorithm of CPPM based on particle filtering is proposed.According to the mathematical model of the system,it tracks the real signal by online separation in demodulation.Simulation results show that the proposed method can track the true signal better than the traditional CPPM scheme.What's more,it has good synchronization robustness,reduced error propagation by wrong decision and low bit error rate.
基金Project supported by Tsinghua University Initiative Scientific Research Program,China(Grant No.2014z21035)
文摘A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power.
文摘This paper gives a spectrum expression which is simple and has a clear physical conception for pulse frequency modulation signal, and has been confirmed by an experiment simultaneously.
基金Supported by the National Natural Science Foundation of China (No.60436030)
文摘The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51707088,51607081the 5th-level talent introduction program of Kunming University of Science and Technology.
文摘This paper presents an improved submodule unified pulse width modulation(SUPWM)scheme for a hybrid modular multilevel converter(MMC)composed of half-bridge submodules(HBSMs)and full-bridge submodules(FBSMs).The proposed SUPWM scheme can achieve an output voltage of(2N+1)(where N is the number of submodules in each arm)levels,which is the same as that of the carrier-phase-shifted PWM(CPSPWM)scheme.Meanwhile,the proposed SUPWM scheme can alleviate the uneven loss distributions between the left leg and right leg in FBSMs of the hybrid MMC.Moreover,the capacitor voltages of the sub-modules can be well balanced without complicated closed-loop voltage balancing controllers.The validity of the proposed SUPWM scheme is verified by both the simulated and experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574105,61475054,61405063,and 61177095)the Hubei Science and Technology Agency Project,China(Grant No.2015BCE052)the Fundamental Research Funds for the Central Universities,China(Grant No.2017KFYXJJ029)
文摘The linear and nonlinear characteristics of time-resolved photoluminescence (PL) of n-type bulk semiconductor GaAs modulated with terahertz (THz) pulse are studied by using an ensemble Monte Carlo (EMC) method. In this paper the center energy valley (Г valley) electron concentration changes with the pulse delay time, sampling time and the outfield are mainly discussed. The results show that the sampling time and the THz field should exceed certain thresholds to effectively excite photoluminescence quenching (PLQ). Adopting a direct current (DC) field makes the sampling time threshold shortened and the linear range of THz field-modulation PL expanded. Moreover, controlling the sampling time and the outfield intensity can improve the linear quality: with forward time, the larger outfield is used; with backward time, the smaller outfield is used. This study can provide a theoretical basis of THz field linear modulation in a larger range for new light emitting devices.
文摘A one-dimensional self-consistent fluid numerical model was developed to study the ignition characteristics of a pulsc-tmxlulated(PM)radio-frequency(RF)glow discharge in atmospheric helium assisted by a sub-microsecond voltage excited pulsed discharge.The temporal evolution of discharge current density and electron density during PM RF discharge burst was investigated to demonstrate the discharge ignition characteristics with or without the pulsed discharge.Under the assistance of pulsed discharge,the electron density in RF discharge burst reaches the magnitude of 1.87 x 1017-3m within 10 RF cycles,accompanied by the formation of sheath structure.It proposes that the pulsed discharge plays an important role in the ignition of PM RF discharge burst.Furthermore,the dynamics of PM RF glow discharge arc demonstrated by the spatiotcmporal evolution of the election density with and without pulsed discharge.The spatial profiles of electron density,electron energy and electric field at specific time instants arc given to explain the assistive role of the pulsed discharge on PM RF discharge ignition.
基金supported by the National Natural Science Foundation of China (Grant No. 51277146)the Foundation of Delta Science,Technologythe Education Development Program for Power Electronics (Grant No. DREG2011003)
文摘By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.
基金Supported by the National Natural Science Foundation of China under Grant No 60977032the Program for Innovation Research of Science of Harbin Institute of Technology(PIRS-HIT)under Grant No T201407
文摘From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.
文摘The generation of a very strong peak current in the first period(PCFP)in a pulse-modulated microwave discharge has been discussed in previous studies.In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model.The computational results show that by increasing the duty cycle or voltage modulation rate(VMR).the discharge eventually becomes fully continuous and PCFP can no longer he observed.In the transition process,the distributions of the electric field,electron energy probability function(EEPF)and plasma density are discussed according to the simulation data,showing different discharge structures.The simulations indicate that many high-energy electrons with electron energy larger than 20eV and low-energy electrons with electron energy less than 3eV could he generated in a pulsed microwave discharge,together with a reversal electric field formed in the anode sheath when PCFP occurs.However,only medium-energy electrons could be observed in a fully continuous discharge.Therefore,by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.