In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge...The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.展开更多
Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy ...Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.展开更多
Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emissi...Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emission of typical nanosecond-pulse discharges(corona,diffuse,spark or arc)are reviewed.Especially,the diffuse discharges are observed at pulse repetition frequencies up to 1 kHz.Factors influencing the discharge characteristics and X-ray emission are analyzed,such as the gap spacing,parameters of the applied pulse(amplitude,pulse repetition frequency),anode and cathode materials,and curvature radius of cathode.It is concluded that the maximum X-ray intensity is obtained in a diffuse discharge,and the X-ray intensity is affected by the pulse repetition frequency,applied voltage,anode material,and curvature radius of cathode.For example,X-ray intensity increases with the pulse repetition frequency and the atomic numbers of the anode material,but it decrease with the increase of curvature radius.It is also shown that the cathode material has no obvious influence on the X-ray intensity.展开更多
Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-m...Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.展开更多
We demonstrate a gain-switched Fe:ZnSe laser pumped by a 2958 nm pulsed Ho,Pr:LLF laser. The maximum single pulse energy is 16.4uJ with a minimum pulse duration of 13.9 ns at the pulse repetition frequency of1 Hz when...We demonstrate a gain-switched Fe:ZnSe laser pumped by a 2958 nm pulsed Ho,Pr:LLF laser. The maximum single pulse energy is 16.4uJ with a minimum pulse duration of 13.9 ns at the pulse repetition frequency of1 Hz when the Fe:ZnSe crystal is cooled to 77 K by liquid nitrogen, corresponding to a slope efficiency of 22.9%.The central wavelength and FWHM linewidth are 3957.4 nm and 23.2 nm, respectively. The output energy monotonically decreases as the crystal temperature increases in the range 77–293 K.展开更多
In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as ...In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.展开更多
There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines. Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different dis...There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines. Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different discharge conditions in air, for revealing the intrinsic relationship between discharge and its audible noise(AN). The relationship between discharge parameters and audio characte- ristics was drawn from the analysis of the electric and sound signals obtained in experiments. Experiment results showed that nanosecond pulsed discharges produce the sound pressure with a microsecond pulse lagging behind the discharge pulse in their waveforms. The peak value of the sound pulse decreases and its high frequency component gradually attenuates, when the measuring distance from discharges increases. The sound pulses correlate with the discharge current and voltage significantly, especially the current. The audible noise produced by repetitive pulsed discharge increases with the strength, duration, and pulse repetition rate of discharge.展开更多
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB209405)National Natural Science Foundation of China(No.51207154)the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University of China(No.EIPE12204)
文摘The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the Shanxi“1331 Project”Key Subjects Construction,China(Grant No.1331KSC).
文摘Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.
基金Project supported by National NatumA Science Foundation of China(51207154, 51222701, 51211120183), National Basic Research Program of China(973 Program) (2011 CB209402), Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University(EIPE12204), Chinese Academy of Sciences Visiting Professorship for Senior Intemational Scientists(2012T1G0021), Russian Foundation for Basic Research(#12-08-91150-FqbEH_a).
文摘Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emission of typical nanosecond-pulse discharges(corona,diffuse,spark or arc)are reviewed.Especially,the diffuse discharges are observed at pulse repetition frequencies up to 1 kHz.Factors influencing the discharge characteristics and X-ray emission are analyzed,such as the gap spacing,parameters of the applied pulse(amplitude,pulse repetition frequency),anode and cathode materials,and curvature radius of cathode.It is concluded that the maximum X-ray intensity is obtained in a diffuse discharge,and the X-ray intensity is affected by the pulse repetition frequency,applied voltage,anode material,and curvature radius of cathode.For example,X-ray intensity increases with the pulse repetition frequency and the atomic numbers of the anode material,but it decrease with the increase of curvature radius.It is also shown that the cathode material has no obvious influence on the X-ray intensity.
基金supported by National Natural Science Foundation of China(Nos.11076026,50707032)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KGCX2-YW-339)Opening Project of State Key Laboratory of Polymer Materials Engineering in Sichuan University(No.KF201103)
文摘Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.
基金the National Natural Science Foundation of China under Grant No 61405047
文摘We demonstrate a gain-switched Fe:ZnSe laser pumped by a 2958 nm pulsed Ho,Pr:LLF laser. The maximum single pulse energy is 16.4uJ with a minimum pulse duration of 13.9 ns at the pulse repetition frequency of1 Hz when the Fe:ZnSe crystal is cooled to 77 K by liquid nitrogen, corresponding to a slope efficiency of 22.9%.The central wavelength and FWHM linewidth are 3957.4 nm and 23.2 nm, respectively. The output energy monotonically decreases as the crystal temperature increases in the range 77–293 K.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60776034)
文摘In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.
基金Project supported by National Basic Research Program of China (973 Program) (2011 CB209402), National Natttral Science Foundation of China(50907069).
文摘There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines. Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different discharge conditions in air, for revealing the intrinsic relationship between discharge and its audible noise(AN). The relationship between discharge parameters and audio characte- ristics was drawn from the analysis of the electric and sound signals obtained in experiments. Experiment results showed that nanosecond pulsed discharges produce the sound pressure with a microsecond pulse lagging behind the discharge pulse in their waveforms. The peak value of the sound pulse decreases and its high frequency component gradually attenuates, when the measuring distance from discharges increases. The sound pulses correlate with the discharge current and voltage significantly, especially the current. The audible noise produced by repetitive pulsed discharge increases with the strength, duration, and pulse repetition rate of discharge.
基金National Nature Science Foundation of China(Grant No.60972159,61032001)Aviation Science Foundation(Grant No.20085184003)Special Foundation Program for Mountain Tai Scholars of China