Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grow...Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.展开更多
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre...Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.展开更多
This article is about the methods and techniques used in the building "retrofit" in modernist style designed by the architect Affonso Eduardo Reidy in the fifties, and also about the project of the new Rio de Janeir...This article is about the methods and techniques used in the building "retrofit" in modernist style designed by the architect Affonso Eduardo Reidy in the fifties, and also about the project of the new Rio de Janeiro MIS (Museum of Image and Sound), under construction, by The North-American office Diller Scofidio + Renfro, both located in the city of Rio de Janeiro. These constructions present a wide view of the concept of sustainability, not commonly used in public buildings in Brazil. In the building designed by Reidy, which belongs to the State of Rio de Janeiro, the regeneration to host the new headquarters of the State Department of Taxation and Finance respected its original characteristics and used smart and sustainable design techniques, as well as recyclable materials. On the other hand, the project of the new museum at Copacabana Beach was entirely planned on sustainable bases and it includes the application of building techniques concerning that purpose. This article presents a study of these two cases and evaluates the techniques and materials used in one another. Observing the principles of sustainability in construction is a pioneering initiative of the State Government. This article aims at making the scientific community aware of the needs of immediate adoption of sustainability techniques in Civil Engineering, not only in the construction of new buildings, but also in the regeneration of the existing ones, as well as the need of imperious adoption of sustainable techniques when it comes to maintainability.展开更多
Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcin...Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.展开更多
Most of the newly developed drug candidates are lipophilic and poorly water-soluble. Enhancing the dissolution and bioavailability of these drugs is a major challenge for the pharmaceutical industry. Liquisolid techni...Most of the newly developed drug candidates are lipophilic and poorly water-soluble. Enhancing the dissolution and bioavailability of these drugs is a major challenge for the pharmaceutical industry. Liquisolid technique, which is based on the conversion of the drug in liquid state into an apparently dry, non-adherent, free flowing and compressible powder,is a novel and advanced approach to tackle the issue. The objective of this article is to present an overview of liquisolid technique and summarize the progress of its applications in pharmaceutics. Low cost, simple processing and great potentials in industrial production are main advantages of this approach. In addition to the enhancement of dissolution rate of poorly water-soluble drugs, this technique is also a fairly new technique to effectively retard drug release. Furthermore, liquisolid technique has been investigated as a tool to minimize the effect of pH variation on drug release and as a promising alternative to conventional coating for the improvement of drug photostability in solid dosage forms. Overall, liquisolid technique is a newly developed and promising tool for enhancing drug dissolution and sustaining drug release, and its potential applications in pharmaceutics are still being broadened.展开更多
The safety,security,and development of a country depend on National Power Elements or factors classified by political scientists on geographical sources.These factors are the capability and capacity of a country to ac...The safety,security,and development of a country depend on National Power Elements or factors classified by political scientists on geographical sources.These factors are the capability and capacity of a country to achieve its development aims and objectives such as population and poverty,enough electricity,climate change,availability of water,food production,adequate health facilities,and industrial capacity.The national power elements are interdependent and same of every developed and developing nation,except one or two elements depending on geographical location and population of that country.To strengthen these capability and capacity factors,in 2000 United Nation introduced eight millennium development goals mainly emphasizing on reduction of poverty level up to 50%by 2015.Pakistan was able to work on only three of the indicators out of 169 but was unable to achieve any significant progress.On ending of 15 years'time UN again in 2015 introduced more universal and executable 17 sustainable development goals to be accomplished by 2030.Science was recognized as one of the tools to achieve these SDGs.Scientific and industrial development along with technology are an effective source of economic development.Technology as an application of science for the welfare of human being and technological capacity for development of economic infrastructure development is the most powerful national power element.Technology such as Nuclear Technology is one of the best,which is an accurate and advanced and can be adopted to achieve these goals.Article will discuss Nuclear Technology application on SDGs on which Pakistan is already working since 1956 and has an expertise and trained manpower for achieving nine out of these 17 sustainable goals by applying Nuclear Technology.展开更多
Microspheres containing Pioglitazone hydrochloride were prepared by the ionotropic external gelation method, using sodium alginate with four mucoadhesive polymers namely sodium carboxy methyl cellulose, hydroxy propyl...Microspheres containing Pioglitazone hydrochloride were prepared by the ionotropic external gelation method, using sodium alginate with four mucoadhesive polymers namely sodium carboxy methyl cellulose, hydroxy propyl methyl cellulose, carbopol 934 P and cellulose acetate phthalate as coat materials. Ionotropic gelation is a method to prepare microspheres using combination of Ca<sup>2+</sup> as cationic components and alginate as anion. The practical yield of prepared microspheres using the ionotropic gelation technique was between 172 mg and 604 mg. The result of the Chi-squared test carried out between the actual (practical) and expected (theoretical) yields showed no significant difference (P < 0.05) which indicated that the ionotropic gelation technique could be successfully employed to prepare pioglitazone microspheres using sodium alginate, sodium carboxy methyl cellulose, carbopol 934 P, HPMC, cellulose acetate butyrate polymers. The drug entrapment efficiency of prepared microspheres showed between 56.12% ± 3.86% to 84.68% ± 2.93% which was significantly higher for ionotropic gelation technique. The highest drug entrapment was found in formulation PMI 8. Swelling index is the capability of a polymer to swell before the drug is released which influences the rate and mechanism of drug release from the polymer matrix. The swelling index of prepared microspheres was in the range of 68% ± 4.52% to 87% ± 0.98%. Pioglitazone HCl microspheres showed controlled release of drug without initial peak level achieving. This type of properties in Pioglitazone HCl microspheres used to decrease side effects, reduce dosing frequency and improve patient compliances. From the all batches PMI 8 is considered the best formulation, because among all other formulations, it shows better extent of drug release up to 82.12% (18 h), good entrapment efficiency (84.68%) and the ex-vivo wash-off test shows the best mucoadhesive property. The in vitro drug release studies do up to 18 h. As observed from the various plots, most of the formulations followed the Korsmeyer-Peppas model.展开更多
Despite multiple schemes implemented by various governments around the country, affordable housing remains elusive to the average Nigerian. Because the situation is comparable to that of other developing nations, it r...Despite multiple schemes implemented by various governments around the country, affordable housing remains elusive to the average Nigerian. Because the situation is comparable to that of other developing nations, it remains a key concern in these countries’ socioeconomic development. Over 52% of Nigeria’s population has been claimed to live in shanties, squatter communities, and informal settlements. This article, therefore, reviews the challenges to the provision of affordable housing in Nigeria and the Sustainable approaches to address them. The article’s findings were based on a thorough examination of the literature. The article’s findings indicated that sustainable approaches for addressing Nigeria’s affordable housing barriers may best be examined through the economic, ecological, social, institutional, and technical factors. The paper urges the present regime, investors, lawmakers, and private developers in Nigeria to implement these approaches for affordable housing provision. The findings from this article will add to the current body of knowledge by providing important information on affordable housing provision and re-directing research interest towards affordable housing in Nigeria and other developing countries.展开更多
Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is nece...Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.展开更多
The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hinde...The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hindering nutrition absorption, gradual degeneration of soil fertility, decline of soil organic matter, and increased incidence of diseases and pests. In China, especially in the Chengdu plain where rice-wheat cropping system is practiced, productivity and soil fertility was enhanced and sustained. This paper reviews the relevant data and experiences on rice-wheat cropping in the Chengdu Plain from 1977 to 2006. The principal sustainable strategies used for rice-wheat cropping systems in Chengdu Plain included: 1) creating a favorable environment and viable rotations; 2) balanced fertilization for maintenance of sustainable soil productivity; 3) improvement of crop management for higher efficiency; and 4) use the newest cultivars and cultivation techniques to upgrade the production level. Future research is also discussed in the paper as: 1) the constant topic: a highly productive and efficient rice-wheat cropping system for sustainable growth; 2) the future trend: simplified cultivation techniques for the rice-wheat cropping system; 3) the foundation: basic research for continuous innovation needed for intensive cropping. It is concluded that in the rice-wheat cropping system, a scientific and reasonable tillage/cultivation method can not only avoid the degradation of soil productivity, but also maintain sustainable growth in the long run.展开更多
Based on water resources conditions,social development,social economy and ecological conditions,the Indicators system for sustainability assessment of water resources use( ISSAWRU) was established for Yinchuan City. U...Based on water resources conditions,social development,social economy and ecological conditions,the Indicators system for sustainability assessment of water resources use( ISSAWRU) was established for Yinchuan City. Using the Technique for Order of Preference by Similarity to Ideal Solution( TOPSIS),the sustainable development and utilization plan of water resources was assessed for Yinchuan City during 2010-2014. In 2010-2014,there were no significant changes in the natural conditions of water resources in Yinchuan City; however,with the promulgation of national water resources related policies,Yinchuan City realized gradual increase in the water resources utilization rate,gradual improvement in the ecological environment,and gradual optimization of water resources sustainable utilization situation at the same time of ensuring rapid economic growth.展开更多
Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evoluti...Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction(HER)occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed.Therefore,efficient platinum group metals(PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded.In this scenario,molybdenum disulfide(MoS_(2))owing to efficacious structural attributes and optimum hydrogen-binding free energy(ΔG_(H*))is emerging as a reliable alternative to PGMs.However,the performance of MoS_(2)-based electrocatalysts is still far away from the benchmark performance.The HER activity of MoS_(2)can be improved by engineering the structural parameters i.e.,doping,defects inducement,modulating the electronic structure,stabilizing the 1 T phase,creating nanocomposites,and altering the morphologies using appropriate fabrication pathways.Here,we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS_(2)-based electrocatalysts using different methods.Advancements in the major fabrication strategies including hydrothermal synthesis methods,chemical vapor deposition,exfoliation techniques,plasma treatments,chemical methodologies,etc.to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed.This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS_(2)-based electrocatalysts.展开更多
文摘Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-02-02385).
文摘Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.
文摘This article is about the methods and techniques used in the building "retrofit" in modernist style designed by the architect Affonso Eduardo Reidy in the fifties, and also about the project of the new Rio de Janeiro MIS (Museum of Image and Sound), under construction, by The North-American office Diller Scofidio + Renfro, both located in the city of Rio de Janeiro. These constructions present a wide view of the concept of sustainability, not commonly used in public buildings in Brazil. In the building designed by Reidy, which belongs to the State of Rio de Janeiro, the regeneration to host the new headquarters of the State Department of Taxation and Finance respected its original characteristics and used smart and sustainable design techniques, as well as recyclable materials. On the other hand, the project of the new museum at Copacabana Beach was entirely planned on sustainable bases and it includes the application of building techniques concerning that purpose. This article presents a study of these two cases and evaluates the techniques and materials used in one another. Observing the principles of sustainability in construction is a pioneering initiative of the State Government. This article aims at making the scientific community aware of the needs of immediate adoption of sustainability techniques in Civil Engineering, not only in the construction of new buildings, but also in the regeneration of the existing ones, as well as the need of imperious adoption of sustainable techniques when it comes to maintainability.
文摘Food is one of the biggest industries in developed and underdeveloped countries. Supply chain sustainability is essential in established and emerging economies because of the rising acceptance of cost-based outsourcing and the growing technological, social, and environmental concerns. The food business faces serious sustainability and growth challenges in developing countries. A comprehensive analysis of the critical success factors (CSFs) influencing the performance outcome and the sustainable supply chain management (SSCM) process. A theoretical framework is established to explain how they are used to examine the organizational aspect of the food supply chain life cycle analysis. This study examined the CSFs and revealed the relationships between them using a methodology that included a review of literature, interpretative structural modeling (ISM), and cross-impact matrix multiplication applied in classification (MICMAC) tool analysis of soil liquefaction factors. The findings of this research demonstrate that the quality and safety of food are important factors and have a direct effect on other factors. To make sustainable food supply chain management more adequate, legislators, managers, and experts need to pay attention to this factor. In this work. It also shows that companies aiming to create a sustainable business model must make sustainability a fundamental tenet of their organization. Practitioners and managers may devise effective long-term plans for establishing a sustainable food supply chain utilizing the recommended methodology.
文摘Most of the newly developed drug candidates are lipophilic and poorly water-soluble. Enhancing the dissolution and bioavailability of these drugs is a major challenge for the pharmaceutical industry. Liquisolid technique, which is based on the conversion of the drug in liquid state into an apparently dry, non-adherent, free flowing and compressible powder,is a novel and advanced approach to tackle the issue. The objective of this article is to present an overview of liquisolid technique and summarize the progress of its applications in pharmaceutics. Low cost, simple processing and great potentials in industrial production are main advantages of this approach. In addition to the enhancement of dissolution rate of poorly water-soluble drugs, this technique is also a fairly new technique to effectively retard drug release. Furthermore, liquisolid technique has been investigated as a tool to minimize the effect of pH variation on drug release and as a promising alternative to conventional coating for the improvement of drug photostability in solid dosage forms. Overall, liquisolid technique is a newly developed and promising tool for enhancing drug dissolution and sustaining drug release, and its potential applications in pharmaceutics are still being broadened.
文摘The safety,security,and development of a country depend on National Power Elements or factors classified by political scientists on geographical sources.These factors are the capability and capacity of a country to achieve its development aims and objectives such as population and poverty,enough electricity,climate change,availability of water,food production,adequate health facilities,and industrial capacity.The national power elements are interdependent and same of every developed and developing nation,except one or two elements depending on geographical location and population of that country.To strengthen these capability and capacity factors,in 2000 United Nation introduced eight millennium development goals mainly emphasizing on reduction of poverty level up to 50%by 2015.Pakistan was able to work on only three of the indicators out of 169 but was unable to achieve any significant progress.On ending of 15 years'time UN again in 2015 introduced more universal and executable 17 sustainable development goals to be accomplished by 2030.Science was recognized as one of the tools to achieve these SDGs.Scientific and industrial development along with technology are an effective source of economic development.Technology as an application of science for the welfare of human being and technological capacity for development of economic infrastructure development is the most powerful national power element.Technology such as Nuclear Technology is one of the best,which is an accurate and advanced and can be adopted to achieve these goals.Article will discuss Nuclear Technology application on SDGs on which Pakistan is already working since 1956 and has an expertise and trained manpower for achieving nine out of these 17 sustainable goals by applying Nuclear Technology.
文摘Microspheres containing Pioglitazone hydrochloride were prepared by the ionotropic external gelation method, using sodium alginate with four mucoadhesive polymers namely sodium carboxy methyl cellulose, hydroxy propyl methyl cellulose, carbopol 934 P and cellulose acetate phthalate as coat materials. Ionotropic gelation is a method to prepare microspheres using combination of Ca<sup>2+</sup> as cationic components and alginate as anion. The practical yield of prepared microspheres using the ionotropic gelation technique was between 172 mg and 604 mg. The result of the Chi-squared test carried out between the actual (practical) and expected (theoretical) yields showed no significant difference (P < 0.05) which indicated that the ionotropic gelation technique could be successfully employed to prepare pioglitazone microspheres using sodium alginate, sodium carboxy methyl cellulose, carbopol 934 P, HPMC, cellulose acetate butyrate polymers. The drug entrapment efficiency of prepared microspheres showed between 56.12% ± 3.86% to 84.68% ± 2.93% which was significantly higher for ionotropic gelation technique. The highest drug entrapment was found in formulation PMI 8. Swelling index is the capability of a polymer to swell before the drug is released which influences the rate and mechanism of drug release from the polymer matrix. The swelling index of prepared microspheres was in the range of 68% ± 4.52% to 87% ± 0.98%. Pioglitazone HCl microspheres showed controlled release of drug without initial peak level achieving. This type of properties in Pioglitazone HCl microspheres used to decrease side effects, reduce dosing frequency and improve patient compliances. From the all batches PMI 8 is considered the best formulation, because among all other formulations, it shows better extent of drug release up to 82.12% (18 h), good entrapment efficiency (84.68%) and the ex-vivo wash-off test shows the best mucoadhesive property. The in vitro drug release studies do up to 18 h. As observed from the various plots, most of the formulations followed the Korsmeyer-Peppas model.
文摘Despite multiple schemes implemented by various governments around the country, affordable housing remains elusive to the average Nigerian. Because the situation is comparable to that of other developing nations, it remains a key concern in these countries’ socioeconomic development. Over 52% of Nigeria’s population has been claimed to live in shanties, squatter communities, and informal settlements. This article, therefore, reviews the challenges to the provision of affordable housing in Nigeria and the Sustainable approaches to address them. The article’s findings were based on a thorough examination of the literature. The article’s findings indicated that sustainable approaches for addressing Nigeria’s affordable housing barriers may best be examined through the economic, ecological, social, institutional, and technical factors. The paper urges the present regime, investors, lawmakers, and private developers in Nigeria to implement these approaches for affordable housing provision. The findings from this article will add to the current body of knowledge by providing important information on affordable housing provision and re-directing research interest towards affordable housing in Nigeria and other developing countries.
基金funding provided by the China Scholarship Council (Nos.202008440524 and 202006370006)supported by the Distinguished Youth Science Foundation of Hunan Province of China (No.2022JJ10073)+1 种基金Innovation Driven Project of Central South University (No.2020CX040)Shenzhen Sciencee and Technology Plan (No.JCYJ20190808123013260).
文摘Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.
基金funded by the National Key Technologies Research and Development Program of China(2006BAD02A05)the Science and Technology Project for Public (Agriculture)the Ministry of Agriculture, China (200903050-4)
文摘The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hindering nutrition absorption, gradual degeneration of soil fertility, decline of soil organic matter, and increased incidence of diseases and pests. In China, especially in the Chengdu plain where rice-wheat cropping system is practiced, productivity and soil fertility was enhanced and sustained. This paper reviews the relevant data and experiences on rice-wheat cropping in the Chengdu Plain from 1977 to 2006. The principal sustainable strategies used for rice-wheat cropping systems in Chengdu Plain included: 1) creating a favorable environment and viable rotations; 2) balanced fertilization for maintenance of sustainable soil productivity; 3) improvement of crop management for higher efficiency; and 4) use the newest cultivars and cultivation techniques to upgrade the production level. Future research is also discussed in the paper as: 1) the constant topic: a highly productive and efficient rice-wheat cropping system for sustainable growth; 2) the future trend: simplified cultivation techniques for the rice-wheat cropping system; 3) the foundation: basic research for continuous innovation needed for intensive cropping. It is concluded that in the rice-wheat cropping system, a scientific and reasonable tillage/cultivation method can not only avoid the degradation of soil productivity, but also maintain sustainable growth in the long run.
基金Supported by Key Research and Development Program of Ningxia(2018BEG03008)First-rate Discipline(Hydraulic Engineering Discipline)Project of Colleges and Universities in Ningxia(NXYLXK2017A03)+1 种基金Natural Science Foundation Project of Ningxia(NZ17032)Project of National Natural Science Foundation(51269022)
文摘Based on water resources conditions,social development,social economy and ecological conditions,the Indicators system for sustainability assessment of water resources use( ISSAWRU) was established for Yinchuan City. Using the Technique for Order of Preference by Similarity to Ideal Solution( TOPSIS),the sustainable development and utilization plan of water resources was assessed for Yinchuan City during 2010-2014. In 2010-2014,there were no significant changes in the natural conditions of water resources in Yinchuan City; however,with the promulgation of national water resources related policies,Yinchuan City realized gradual increase in the water resources utilization rate,gradual improvement in the ecological environment,and gradual optimization of water resources sustainable utilization situation at the same time of ensuring rapid economic growth.
基金the Italian Ministry of University and Research(MUR)through the“Rita Levi Montalcini 2018”Fellowship(Grant number PGR18MAZLI)ENEA–UNIMIB PNRR agreement(Attività1.1.3 del PNRR POR H2)+1 种基金the Ministry of Science and Technology(State of Israel)and the Ministry of Foreign Affairs and International Cooperation–Directorate General for Cultural and Economic Promotion and Innovation(Italian Republic),respectively,within the bilateral project Italy-Israel(WE-CAT)the Italian ministry MUR for funding through the FISR 2019 project AMPERE(FISR2019_01294)。
文摘Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction(HER)occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed.Therefore,efficient platinum group metals(PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded.In this scenario,molybdenum disulfide(MoS_(2))owing to efficacious structural attributes and optimum hydrogen-binding free energy(ΔG_(H*))is emerging as a reliable alternative to PGMs.However,the performance of MoS_(2)-based electrocatalysts is still far away from the benchmark performance.The HER activity of MoS_(2)can be improved by engineering the structural parameters i.e.,doping,defects inducement,modulating the electronic structure,stabilizing the 1 T phase,creating nanocomposites,and altering the morphologies using appropriate fabrication pathways.Here,we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS_(2)-based electrocatalysts using different methods.Advancements in the major fabrication strategies including hydrothermal synthesis methods,chemical vapor deposition,exfoliation techniques,plasma treatments,chemical methodologies,etc.to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed.This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS_(2)-based electrocatalysts.