The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary ...The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.展开更多
In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional r...In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.展开更多
This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Gui...This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.展开更多
Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignit...Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.展开更多
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com...Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.展开更多
The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, ...The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.展开更多
The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and t...The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2).展开更多
The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and c...The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.展开更多
The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the s...The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the self-developed pulverized coal burning device.The results show that the coal combustion rate reduces with xO/xC decreasing,and the combustion rate of bituminous coal is higher than that of anthracite.The coal combustion rate ascends with the rise of volatile matter,but when volatile matter of pulverized coal is more than 18%,the combustion rates will not increase correspondingly.Small amount of CaCO3 and CO2 additions can promote coal combustion,and the effect of CaCO3 is more apparent,which can increase the pulverized coal combustion rate by 15%-18% or so.展开更多
The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-partic...The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-particle mixture can be written. The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distribution. The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600 MW utility boiler. Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity. Local measurements of velocities using LDV probe, gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables. Again we have observed a good agreement between the computations and the measurements in terms of jet penetration, temperature distribution, oxygen concentration and ash content.展开更多
Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 5...Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 50% and 60%, respectively. The high moisture content causes a reduction in plant performance and higher emissions, compared to the bituminous (hard) coals. Despite their high-moisture content, lignite and sub-bituminous coals from the western U.S. and worldwide are attractive due to their abundance, low cost, low NOx and SOx emissions, and high reactivity. A novel low-temperature coal drying process employing a fluidized bed dryer and waste heat was developed in the U.S. by a team led by GRE (Great River Energy). Demonstration of the technology was conducted with the U.S. Department of Energy and GRE funding at Coal Creek Station Unit 1. Following the successful demonstration, the low-temperature coal drying technology was commercialized by GRE under the trade name DryFiningTM fuel enhancement process and implemented at both units at Coal Creek Station. The coal drying system at Coal Creek has been in a continuous commercial operation since December 2009. By implementing DryFining at Coal Creek, GRE avoided $366 million in capital expenditures, which would otherwise be needed to comply with emission regulations. Four years of operating experience is described in this paper.展开更多
In order to achieve the target of reducing oil consumption to zero for pulverized coal(PC)boiler in power plant,the paper developed a novel coal pulverized ignition approach,called as Alternating-Current plasma(AC pla...In order to achieve the target of reducing oil consumption to zero for pulverized coal(PC)boiler in power plant,the paper developed a novel coal pulverized ignition approach,called as Alternating-Current plasma(AC plasma)ignition,with the advantages of excellent PC combustion behavior and longer electrode life-span.The scientific principle of how to generate the AC plasma arc was elaborated in detail.First,the experiments on life-span of electrodes inside AC plasma generator had been conducted,finding a workable way to extend its life-span beyond 530 hours.Second,a new AC plasma burner specifically designed for lean coal according to the principle of PC staged combustion had been illustrated with diagrams and then used to ignite the PC-air stream under four kinds of conditions with a varying AC plasma power from 150 kW to 300 kW,focusing on analyses of the influence of AC plasma power on combustion behaver,such as combustion temperature,carbon burnout rate as well as PC combustion regime.The following results showed that in the case of the power of the AC plasma was P=300 kW,a satisfied PC combustion process could achieved,with the average PC combustion temperature of about 940°C,combustion flame length of 6.3 m,and the total carbon burnout rate of up to 52.2%.In addition,about 80%of the nozzle outlet section was filled with bright flame,while 81%of the PC was in zone of the cylindrical flame regime.The PC combustion modes were changed repeatedly during the process of combustion,which went from homogeneous combustion mode at initial ignition stage to combined combustion mode and heterogeneous combustion mode at middle stage,finally to combined combustion mode at later stage.The research conclusion in this paper has proved that the AC plasma ignition approach is feasible and effective to ignite low-rank coal without the present of fuel oil.展开更多
文摘The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.
基金Funded by the National Natural Science Foundation of China and Iron & Steel Unite Research Funds (50374085).
文摘In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.
文摘This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.
基金support from the Allocated Section of the Basic Fund for the Scientific Research and Operation of Central Universities of China (No.2009KH10)
文摘Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.
基金This paper is supported by the National Key R&D Program of China(2017YFB0601805).
文摘Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.
基金support of this research on the mechanism of enhancing the performance of composite pellets_made from limonite(Project No.KKS0202152010,202101AT070083)National Natural Science Foundation of China(No.52104351)+1 种基金the Yunnan Fundamental Research Projects(No.202301AT070795,202101AU070088)the author Lei Gao would like to acknowledge Yunnan Province Xingdian Talent Support Plan Project.
文摘The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.
基金supported by the National Natural Science Foundation of China(grant number:51976120).
文摘The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2).
基金Item Sponsored by National Key Technology Research and Development Programin 11th Five-Year Plan of China(2008BAB32B05)
文摘The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.
基金Item Sponsored by National Basic Research Program of China(2012CB720401)National Key Technology Research and Development Program in 12th Five-Year Plan of China(2011BAC01B02)National Natural Science Foundation of China(51134008)
文摘The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the self-developed pulverized coal burning device.The results show that the coal combustion rate reduces with xO/xC decreasing,and the combustion rate of bituminous coal is higher than that of anthracite.The coal combustion rate ascends with the rise of volatile matter,but when volatile matter of pulverized coal is more than 18%,the combustion rates will not increase correspondingly.Small amount of CaCO3 and CO2 additions can promote coal combustion,and the effect of CaCO3 is more apparent,which can increase the pulverized coal combustion rate by 15%-18% or so.
文摘The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 MW coal fired boiler. Assuming a no-slip condition between the gas and the coal, the equations for a gas-particle mixture can be written. The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distribution. The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600 MW utility boiler. Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity. Local measurements of velocities using LDV probe, gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables. Again we have observed a good agreement between the computations and the measurements in terms of jet penetration, temperature distribution, oxygen concentration and ash content.
文摘Lignite and sub-bituminous coals from western U.S. contain high amounts of moisture (sub-bituminous: 15%-30%, lignites: 25%-40%). German and Australian lignites (brown coals) have even higher moisture content, 50% and 60%, respectively. The high moisture content causes a reduction in plant performance and higher emissions, compared to the bituminous (hard) coals. Despite their high-moisture content, lignite and sub-bituminous coals from the western U.S. and worldwide are attractive due to their abundance, low cost, low NOx and SOx emissions, and high reactivity. A novel low-temperature coal drying process employing a fluidized bed dryer and waste heat was developed in the U.S. by a team led by GRE (Great River Energy). Demonstration of the technology was conducted with the U.S. Department of Energy and GRE funding at Coal Creek Station Unit 1. Following the successful demonstration, the low-temperature coal drying technology was commercialized by GRE under the trade name DryFiningTM fuel enhancement process and implemented at both units at Coal Creek Station. The coal drying system at Coal Creek has been in a continuous commercial operation since December 2009. By implementing DryFining at Coal Creek, GRE avoided $366 million in capital expenditures, which would otherwise be needed to comply with emission regulations. Four years of operating experience is described in this paper.
基金supported by the national natural science foundation of china(Contract No.51806132)doctor start-up capital of Shanxi University(No.20174462)。
文摘In order to achieve the target of reducing oil consumption to zero for pulverized coal(PC)boiler in power plant,the paper developed a novel coal pulverized ignition approach,called as Alternating-Current plasma(AC plasma)ignition,with the advantages of excellent PC combustion behavior and longer electrode life-span.The scientific principle of how to generate the AC plasma arc was elaborated in detail.First,the experiments on life-span of electrodes inside AC plasma generator had been conducted,finding a workable way to extend its life-span beyond 530 hours.Second,a new AC plasma burner specifically designed for lean coal according to the principle of PC staged combustion had been illustrated with diagrams and then used to ignite the PC-air stream under four kinds of conditions with a varying AC plasma power from 150 kW to 300 kW,focusing on analyses of the influence of AC plasma power on combustion behaver,such as combustion temperature,carbon burnout rate as well as PC combustion regime.The following results showed that in the case of the power of the AC plasma was P=300 kW,a satisfied PC combustion process could achieved,with the average PC combustion temperature of about 940°C,combustion flame length of 6.3 m,and the total carbon burnout rate of up to 52.2%.In addition,about 80%of the nozzle outlet section was filled with bright flame,while 81%of the PC was in zone of the cylindrical flame regime.The PC combustion modes were changed repeatedly during the process of combustion,which went from homogeneous combustion mode at initial ignition stage to combined combustion mode and heterogeneous combustion mode at middle stage,finally to combined combustion mode at later stage.The research conclusion in this paper has proved that the AC plasma ignition approach is feasible and effective to ignite low-rank coal without the present of fuel oil.