To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carri...To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carried out. According to the leaking property of thesystem, a speed offset principle is also proposed to eliminate the cavitation and tension caused bythe leakage and condensation of oil, which makes the system be in the same state as a valvecontrolled circuit. This principle is explained theoretically and experimentally. Further therelationship that the pressures in cylinder chambers change with load and leakage, and therelationship between biasing speed and pre-load pressures in cylinder chambers are established. Theresearch has proved that the new system has similar technique features as those of controlled withservo valves, but due to the elimination of all the throttle lose the efficiency of system can beimproved greatly.展开更多
The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achie...The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
Cryogenic ground supporting equipment (CGSE) developed for international cooperation scientific experimental item AMS-02 is the ground supporting and cooling system, which will complete the cooling process of the supe...Cryogenic ground supporting equipment (CGSE) developed for international cooperation scientific experimental item AMS-02 is the ground supporting and cooling system, which will complete the cooling process of the superconductor of AMS-02 from ambient temperature to 1.8 K. Obtaining 1.8 K He Ⅱ by vacuum-pumping is discussed in detail and compared with the other three schemes. The results show that the scheme of vacuum-pumping not only could meet the requirement of the project much better but also has higher reliability compared with other schemes. To select the vacuum pump, the energy conservation model is presented according to the experimental system of CGSE. Therefore, the pumping speed is also determined.展开更多
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the bla...In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.展开更多
The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient re...The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.展开更多
Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare ...Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare the relationship between the vibration and sound for the same discharge of 780 L/h and NPSHA of 0.754 at variable speeds of 1476 rpm, 1644 rpm, 1932 rpm, 2190 rpm, 2466 rpm, and 2682 rpm. Results showed that: the occurrence of cavitation depends on the rotational speed, and the sound signals in both no cavitation and cavitation conditions appear in random manner. While, surveying the vibration and sound spectrums at the second, third, and fourth blade passing frequencies reveals no indications or phenomenon associated with the cavitation at variable speeds. It is recommended to survey the vibration spectra at the rotational and blade passing frequencies simultaneously as a detection unique method of cavitation.展开更多
The stability of the grid is jeopardized with the large percentage of non-dispatchable renewables like wind power and also with increasing solar power. This creates various problems because these forms of energy are v...The stability of the grid is jeopardized with the large percentage of non-dispatchable renewables like wind power and also with increasing solar power. This creates various problems because these forms of energy are very volatile and difficult to predict. In most countries the in-feed of these sources must not be curtailed. In addition most of the renewables do not provide short circuit capacity and inertia in the same way as classical units and so further worsen the stability of the grid. The growing exploitation of wind and solar might be limited due to grid stability problems. In order to compensate those problems a large amount of reserve capacity is needed and therefore new technologies for electricity storage are required. Hydraulic pumped storage—the classical storage technology—has some disadvantages. These plants are in mountain regions often far away from wind farms. The distance to the wind farms mean additional loading for the already stressed grid and additional transmission losses. To compensate the very volatile wind energy, the pump input power should be varied continuously. This is so far only possible with variable speed units. Up to now double-fed asynchronous motor-generators are used which are rather expensive. In order to provide a solution for the described situation, ANDRITZ HYDRO has developed a new innovative concept of decentralized pump storage plants. Small standardized pump turbines are combined with a synchronous motor-generator and a full size converter which allows speed variation in pump and turbine mode over a wide range. These plants can be built locally close to wind farms and other sources to be balanced, allowing the increase of renewable energy without increasing the transmission line capacity. For the future smart grids this will be a key storage technology. This concept is reliable, innovative and more economic than other storage technologies.展开更多
The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low s...The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.展开更多
In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station ...In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station can be improved with variable-speed pumped-storage tech no logy. Combined with chemical en ergy storage, the failure to achieve sec on d-order response speed and the insufficient safety and reliability of pumped-storage power units could be solved. With the better solar en ergy and site resources, the in teg rated performance can be improved by an optical storage system in stalled in future pumped-storage stations. Through the characteristics analysis of the new type of pumped-storage power station, three types of optimal station locations are proposed, namely, the load concentration area, new energy concentration area, and ultrahigh- voltage direct current receiver area. Taking the new pumped-storage power station as an example, the advantages of multi-energy cooperation and joint operation are analyzed. It can be predicted that the frequency and load regulation of the power grid will be more flexible, and the service capacity to the main power grid will be much stronger in the future.展开更多
Cavitation of centrifugal blood pump is a serious problem accompany with the blocking failure of short inlet cannula. However, hardly any work has been seen in published literature on this complex cavitation phenomeno...Cavitation of centrifugal blood pump is a serious problem accompany with the blocking failure of short inlet cannula. However, hardly any work has been seen in published literature on this complex cavitation phenomenon caused by the coupling effect of inlet cannula blocking and pumps suction. Even for cavitation studies on ordinary centrifugal pumps, similar researches on this issue are rare. In this paper, the roles of throttling, rotation speed and fluid viscosity on bubble inception and intensity in a centrifugal blood pump are studied, on the basis of experimental observations. An adjustable throttle valve installed just upstream blood pump inlet is used to simulate the throttling effect of the narrowed inlet cannula. The rotation speed is adjusted from 2 600 r/rain to 3 200 r/min. Glycerin water solutions are used to investigate the influences of kinetic viscosity. Bubbles are recorded with a high-speed video camera. Direct observation shows that different from cavitation in industrial centrifugal pumps, gas nuclei appears at the nearby of vane leading edges while throttling is light, then moves upstream to the joint position of inlet pipe and pump with the closing of the valve. It's found that the critical inlet pressure, obtained when bubbles are first observed, decreases linearly with viscosity and the slope is independent with rotation speeds; the critical inlet pressure and the inlet extreme pressure which is obtained when the throttle valve is nearly closed, fall linearly with rotation speed respectively and the relative pressure between them is independent with rotation speed and fluid viscosity. This paper studies experimentally on cavitation in centrifugal blood pump that caused by the failure of assembled short inlet cannula, which mav beneficial the desima of centrifugal blood Dumo with inlet cannula.展开更多
Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies...Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies most resources of engine , the matching strategy between engine and main pump is analyzed to meet the load demand and reduce the engine rational speed drop.The testing method is established to measure the fuel consumption of engine under various working conditions , and the experimental data are analyzed to find the law of the fuel consumption of engine.The system performance can be improved by adjusting the system input value.Finally , the energy-saving matching strategy is established to reduce the fuel consumption of truck for unit workload , which provides a new approach for the energy-saving of truck-mounted concrete pump.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
This paper presents a SEIG-IM system using a self excited induction generator driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state perfo...This paper presents a SEIG-IM system using a self excited induction generator driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Furthermore, a dynamic analysis and performance characteristics are examined. The pro-posed methodology is discussed in order to optimize the quantity of the pumped water. Therefore an optimal excitation capacitor for a given wind rotor speed is determined and a suitable operation mode of the system is established.展开更多
Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and period...Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.展开更多
基金This project is supported by National Natural Science Foundation of China(No.50275102) National Foundation for Abroad Return People, China (No.2001345).
文摘To control the position of differential cylinder closed loop without usingany throttle elements, a flew idea that two speed variable pumps are used to compensate thenon-symmetric flow of differential cylinder is carried out. According to the leaking property of thesystem, a speed offset principle is also proposed to eliminate the cavitation and tension caused bythe leakage and condensation of oil, which makes the system be in the same state as a valvecontrolled circuit. This principle is explained theoretically and experimentally. Further therelationship that the pressures in cylinder chambers change with load and leakage, and therelationship between biasing speed and pre-load pressures in cylinder chambers are established. Theresearch has proved that the new system has similar technique features as those of controlled withservo valves, but due to the elimination of all the throttle lose the efficiency of system can beimproved greatly.
基金This project is supported by National Natural Science Foundation of China (No.50105018) and Provincial Natural Science Foundation of Zhejiang of China (No.501119).
文摘The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
基金The National Natural Science Foundation of China ( No. 50476022 )Ministries and Commissions of Science and Technology of Shanghai Government (No. 03DZ 14014)
文摘Cryogenic ground supporting equipment (CGSE) developed for international cooperation scientific experimental item AMS-02 is the ground supporting and cooling system, which will complete the cooling process of the superconductor of AMS-02 from ambient temperature to 1.8 K. Obtaining 1.8 K He Ⅱ by vacuum-pumping is discussed in detail and compared with the other three schemes. The results show that the scheme of vacuum-pumping not only could meet the requirement of the project much better but also has higher reliability compared with other schemes. To select the vacuum pump, the energy conservation model is presented according to the experimental system of CGSE. Therefore, the pumping speed is also determined.
基金Supported by Jiangsu Provincical Natural Science Foundation of China(Grant No.BK20140554)National Natural Science Foundation of China(Grant No.51409123)+2 种基金China Postdoctoral Science Foundation(Grant No.2015T80507)Innovation Project for Postgraduates of Jiangsu Province,China(Grant No.KYLX15_1066)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
基金Zhejiang Provincial Natural Science Foundation of China(No.LY14E090011)Quzhou Science and Technology Development Fund,China(No.20121057)Zhejiang Provincial Science and Technology Project,China(No.2015C31129)
文摘The rotating speed fluctuation for turbomachinery is a common problem, which will cause severe destruction for equipments and basis when the fluctuation is very strong. In this paper,in order to study the transient response characteristics of a radial vane pump subjected to slight( 5%) and strong( 20%)fluctuating rotational speeds, the variation characteristics of the external hydraulic performances are numerically predicted by means of computational fluid dynamics( CFD) technology. The results manifest that the responses of head and flow rate are different relative to the fluctuating characteristics of rotational speed. The response of the former is very satisfied in synchronism,while that of the latter is hysteretic. Meanwhile,it is found that the variation tendencies of the static pressures at the inlet and outlet of the pump are completely opposite, while the response characteristics of the dynamic pressures at the inlet and outlet are nearly identical.Subsequently,in order to further reveal the transient behavior during the instantaneous operating periods,two non-dimensional parameters are employed to deeply analyze it. The result shows that the variation tendencies of these two parameters are also approximately opposite.Moreover,the quasi-steady assumption is not able to be used to accurately assess the transient flow during transient operating periods. The comparison results show that the transient behavior does not show obvious distinctions between slight and strong fluctuating rotating speeds.
文摘Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare the relationship between the vibration and sound for the same discharge of 780 L/h and NPSHA of 0.754 at variable speeds of 1476 rpm, 1644 rpm, 1932 rpm, 2190 rpm, 2466 rpm, and 2682 rpm. Results showed that: the occurrence of cavitation depends on the rotational speed, and the sound signals in both no cavitation and cavitation conditions appear in random manner. While, surveying the vibration and sound spectrums at the second, third, and fourth blade passing frequencies reveals no indications or phenomenon associated with the cavitation at variable speeds. It is recommended to survey the vibration spectra at the rotational and blade passing frequencies simultaneously as a detection unique method of cavitation.
文摘The stability of the grid is jeopardized with the large percentage of non-dispatchable renewables like wind power and also with increasing solar power. This creates various problems because these forms of energy are very volatile and difficult to predict. In most countries the in-feed of these sources must not be curtailed. In addition most of the renewables do not provide short circuit capacity and inertia in the same way as classical units and so further worsen the stability of the grid. The growing exploitation of wind and solar might be limited due to grid stability problems. In order to compensate those problems a large amount of reserve capacity is needed and therefore new technologies for electricity storage are required. Hydraulic pumped storage—the classical storage technology—has some disadvantages. These plants are in mountain regions often far away from wind farms. The distance to the wind farms mean additional loading for the already stressed grid and additional transmission losses. To compensate the very volatile wind energy, the pump input power should be varied continuously. This is so far only possible with variable speed units. Up to now double-fed asynchronous motor-generators are used which are rather expensive. In order to provide a solution for the described situation, ANDRITZ HYDRO has developed a new innovative concept of decentralized pump storage plants. Small standardized pump turbines are combined with a synchronous motor-generator and a full size converter which allows speed variation in pump and turbine mode over a wide range. These plants can be built locally close to wind farms and other sources to be balanced, allowing the increase of renewable energy without increasing the transmission line capacity. For the future smart grids this will be a key storage technology. This concept is reliable, innovative and more economic than other storage technologies.
基金Project(51179075)supported by the National Natural Science Foundation of ChinaProject(BK20131256)supported by the Natural Science Funds of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu High Education Institutions,China
文摘The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.
基金supported by the State Grid Science and Technology Project(No.SGZJ0000KXJS1800313/Title 1:Research on Key Technologies Engineering Application of Large Variable Speed Pumped Storage UnitNo.SGTYHT/17-JS-199/Title 2:Study on Transient Characteristics Analysis of Variable Speed Pumped Storage Unit and Coordination Control Technology of Network Source)
文摘In this paper, a new type of pumped-storage power station with faster response speed, wider regulation range, and better stability is proposed. The operational flexible of the traditional pumped-storage power station can be improved with variable-speed pumped-storage tech no logy. Combined with chemical en ergy storage, the failure to achieve sec on d-order response speed and the insufficient safety and reliability of pumped-storage power units could be solved. With the better solar en ergy and site resources, the in teg rated performance can be improved by an optical storage system in stalled in future pumped-storage stations. Through the characteristics analysis of the new type of pumped-storage power station, three types of optimal station locations are proposed, namely, the load concentration area, new energy concentration area, and ultrahigh- voltage direct current receiver area. Taking the new pumped-storage power station as an example, the advantages of multi-energy cooperation and joint operation are analyzed. It can be predicted that the frequency and load regulation of the power grid will be more flexible, and the service capacity to the main power grid will be much stronger in the future.
基金supported by the National Natural Science Foundation of China(Grant No.51275461)the Zhejiang Provincial Natural Science Foundation of China(Grant No.Z1110189)
文摘Cavitation of centrifugal blood pump is a serious problem accompany with the blocking failure of short inlet cannula. However, hardly any work has been seen in published literature on this complex cavitation phenomenon caused by the coupling effect of inlet cannula blocking and pumps suction. Even for cavitation studies on ordinary centrifugal pumps, similar researches on this issue are rare. In this paper, the roles of throttling, rotation speed and fluid viscosity on bubble inception and intensity in a centrifugal blood pump are studied, on the basis of experimental observations. An adjustable throttle valve installed just upstream blood pump inlet is used to simulate the throttling effect of the narrowed inlet cannula. The rotation speed is adjusted from 2 600 r/rain to 3 200 r/min. Glycerin water solutions are used to investigate the influences of kinetic viscosity. Bubbles are recorded with a high-speed video camera. Direct observation shows that different from cavitation in industrial centrifugal pumps, gas nuclei appears at the nearby of vane leading edges while throttling is light, then moves upstream to the joint position of inlet pipe and pump with the closing of the valve. It's found that the critical inlet pressure, obtained when bubbles are first observed, decreases linearly with viscosity and the slope is independent with rotation speeds; the critical inlet pressure and the inlet extreme pressure which is obtained when the throttle valve is nearly closed, fall linearly with rotation speed respectively and the relative pressure between them is independent with rotation speed and fluid viscosity. This paper studies experimentally on cavitation in centrifugal blood pump that caused by the failure of assembled short inlet cannula, which mav beneficial the desima of centrifugal blood Dumo with inlet cannula.
文摘Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies most resources of engine , the matching strategy between engine and main pump is analyzed to meet the load demand and reduce the engine rational speed drop.The testing method is established to measure the fuel consumption of engine under various working conditions , and the experimental data are analyzed to find the law of the fuel consumption of engine.The system performance can be improved by adjusting the system input value.Finally , the energy-saving matching strategy is established to reduce the fuel consumption of truck for unit workload , which provides a new approach for the energy-saving of truck-mounted concrete pump.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
文摘This paper presents a SEIG-IM system using a self excited induction generator driven by wind turbine and supplying an induction motor which is coupled to a centrifugal pump. A method to describe the steady state performance based on nodal analysis is presented. Furthermore, a dynamic analysis and performance characteristics are examined. The pro-posed methodology is discussed in order to optimize the quantity of the pumped water. Therefore an optimal excitation capacitor for a given wind rotor speed is determined and a suitable operation mode of the system is established.
基金supported by the National Natural Science Foundation of China(Grant No.50875081)China Postdoctoral Science Foundation(Grant No.20080440992)+1 种基金the Planned Science and Technology Support Project of Hunan Province(Grant No.2009SK3159)Graduate Innovation Fund of Hunan University of Science and Technology(Grant No.S100109)
文摘Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.