期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attenuation of Chlorinated Contamination in Three Different Depths of Aquifers at Remediation Site 被引量:1
1
作者 Sun Shaodong Li Weisi +7 位作者 Huang Yongjun Jiang Qing Bai Yu Wang Kunhua Xue Jianliang Wang Bo Yan Dongdong Xu Conghai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期162-178,共17页
The cleanup of carbon tetrachloride(CCl4)in groundwater is challenging due to its high volatility and tendency to form a dense nonaqueous liquid phase.From the engineering applications perspective,the pump-and-treat(P... The cleanup of carbon tetrachloride(CCl4)in groundwater is challenging due to its high volatility and tendency to form a dense nonaqueous liquid phase.From the engineering applications perspective,the pump-and-treat(PAT)technology has substantial advantages owing to its large-scale implementation ability to solve groundwater contamination.However,few studies focused on the variation in chloride contaminants in remediation sites after the contaminated groundwater was pumped and treated.Herein,we monitored the changes in chlorinated contamination in groundwater from 12 aquifers at the field level for 6 months.Considering that the natural attenuation of chlorinated contamination is inseparable from the action of microorganisms,the major environmental factors influencing biodegradation were also evaluated.A redundancy analysis(RDA)showed that inorganic salts(DS,DN,and DF)were the most important factor(>60%)affecting the concentration of chloride contaminants,including the negative correlation between DN and the degradation of contaminants in shallow aquifers.In deep aquifers,DS,DF,and pH explained most of the degradation of chloride contaminants.For bedrock layers,DCl was positively relevant to the chloride contaminants in wells PTJ2 and PTJ10.In addition,EC and DS accounted for 73.2%and 92.4%of the contaminant’s variance in wells PTJ4 and PTJ8,respectively.Moreover,the concentrations of the corresponding contaminations and physicochemical variation in three different depths of aquifers were compared;the shallower aquifers showed a higher biodegradation.The in situ monitoring and analysis of contaminated groundwater in remediation sites under PAT will promote practical wastewater treatment technologies in engineering applications. 展开更多
关键词 groundwater chloride contaminants pump-and-treat BIODEGRADATION engineering application
下载PDF
Numerical Simulation for Remediation Planning for 1,4-Dioxane-Contaminated Groundwater at Kuwana Illegal Dumping Site in Japan Based on the Concept of Verified Follow Up 被引量:1
2
作者 Ramrav Hem Toru Furuichi +1 位作者 Kazuei Ishii Yu-Chi Weng 《Journal of Water Resource and Protection》 2013年第7期699-708,共10页
At Kuwana illegal dumping site in Japan, where hazardous waste was illegally dumped, groundwater was severely contaminated by Volatile Organic Compounds (VOCs). Groundwater was already remedied by conducting Pump-and-... At Kuwana illegal dumping site in Japan, where hazardous waste was illegally dumped, groundwater was severely contaminated by Volatile Organic Compounds (VOCs). Groundwater was already remedied by conducting Pump-and-Treat (P&T) after containment of all the waste by vertical slurry walls from 2002 to 2007. However, 1,4-dioxane was detected in both waste and groundwater outside of slurry walls after it was newly added into Japan environmental standards in late 2009, which suggested that the walls did not contain 1,4-dioxane completely. Our previous study developed a model to predict the 1,4-dioxane distribution in groundwater after the previous remediation at the site. In this study, numerical simulation was applied for remediation planning at the site based on the concept of Verified Follow Up (VF-UP) that had been proposed as a new approach to complete remediation effectively with consideration of future risks. The amount of waste to be removed and pumping plans were discussed by numerical simulation to achieve the remedial objective in which 1,4-dioxane in groundwater outside of walls is remedied within 10 years and 1,4-dioxane spreading throughout the walls is prevented in the case where a portion of waste is remained. Firstly, the amount of waste to be removed considering pumping plans for P&T was determined by scenario analysis. As a result, at least two-third of waste should be removed by combining with P&T. However, if the waste is remained, future risks of 1,4-dioxane spreading through the slurry walls may occur. Our simulation suggested that groundwater within the remaining waste must be pumped up at least 20 m3/d for containment of 1,4-dioxane within the remaining waste. In conclusion, our numerical simulation determined the amount of waste to be removed and the pumping plans for P&T to achieve the remedial objective effectively considering future risks based on the concept of VF-UP. 展开更多
关键词 REMEDIATION PLANNING Numerical Simulation Verified FOLLOW Up pump-and-treat 1 4-Dioxane-Contaminated Groundwater ILLEGAL DUMPING Site
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部