To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ...To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.展开更多
The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced lo...The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.展开更多
The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the ...The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.展开更多
With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performa...With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of attacks against USN based on NAS head. The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity. Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance.展开更多
A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). ...A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). The MUVFS offers a storage volume view for each authorized user who can access only the data in his own storage volume, the security scheme enables all users to encrypt and decrypt the data of their own storage view at client-side, and the USN server needs only to check the users’ identities and the data’s integrity. Experiments were performed to compare the sequential read, write and read/write rates of NFS+MUVFS+secure_module with those of NFS. The results indicate that the security of the USN is improved greatly with little influence on the system performance when the MUVFS and the security scheme are integrated into it.展开更多
In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing...In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.展开更多
After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cos...After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cost of oil from offshore is much higher than that of oil from onshore,so it is more sensitive to oil price.However,in recent years,oil price has been hovering at a low level for a long time,almost close to or even lower than the E&P cost of oil,which directly affects the development of oilfields.Besides the influence of oil price,some oilfields present the characteristics of marginal reserve scale,short peak production period and output rapidly declining.There leads to short economic life period and makes the economic benefit close to or lower than oilfield’s hurdle rate,which increases the difficulty of offshore oilfield development.As an important part of oilfield development,Floating Production Storage and Offloading unit,its investment mode and rent mode directly affect overall oilfield’s rate of return and the economic life.This paper chooses lease mode as the research object based on the analysis of investment mode,and further puts forward rent mode related with oil price through the analysis of traditional rent mode,and illustrates the advantages and disadvantages of various rent modes and their applicability so that the lessor chooses the right mode to achieve Win-Win with Oil Company and promotes the development of oilfields under low oil price.展开更多
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage...Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.展开更多
The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achieve...The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.展开更多
The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage po...The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage potential conditions, geothermal conditions, research degree and potential resources conditions, social and economic conditions as first-level indexes. Based on collected data and a comprehensive analysis of 16 level-two indexes and 9 level-three indexes, and with the application of comprehensive index method, the conclusions regarding the suitability partition of the secondary tectonic units of Sichuan Basin are as follows: Central Sichuan low-flat structural belt is highly suitable for carbon dioxide geological storage, West Sichuan low-slope structural belt is relatively suitable, and SW low-slope structural belt is unsuitable for carbon dioxide geological storage, South Sichuan low-slope structural belt is relatively unsuitable, whereas East Sichuan high-slope faulted fold belt, and North Sichuan low-flat structural belt are fairly suitable for carbon dioxide geological storage. Based on the above, with a comprehensive analysis of corresponding hydrographic and geological conditions, and at the same time considering the non-cov- ered oil or gas resources and the buried structure, six CO2 geological target formations are identified, including lower Jurassic Ziliujing Group, upper Triassic Xujiahe Group, middle Triassic Leikoupo Group, lower Triassic Jialingjiang Group and Feixianguan Group, and lower Permian Qixia Group. This paper provides an important guidance and reference for the selection criteria of CO2 geologic storage sites in Sichuan Basin.展开更多
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu...Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.展开更多
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing...Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.展开更多
Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hamp...Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.展开更多
We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leadin...We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.展开更多
基金supported by the State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023035).
文摘To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.
文摘The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.
文摘The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.
文摘With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of attacks against USN based on NAS head. The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity. Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance.
文摘A multi-user view file system (MUVFS) and a security scheme are developed to improve the security of the united storage network (USN) that integrates a network attached storage (NAS) and a storage area network (SAN). The MUVFS offers a storage volume view for each authorized user who can access only the data in his own storage volume, the security scheme enables all users to encrypt and decrypt the data of their own storage view at client-side, and the USN server needs only to check the users’ identities and the data’s integrity. Experiments were performed to compare the sequential read, write and read/write rates of NFS+MUVFS+secure_module with those of NFS. The results indicate that the security of the USN is improved greatly with little influence on the system performance when the MUVFS and the security scheme are integrated into it.
基金the fund program of research on re-electrification(heat pump clean heating)to promote the new energy consumption in Shaanxi power grid(5226KY18002P).
文摘In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.
文摘After many years of exploitation,onshore oil and gas resources are about to enter a recession period.Oil and gas will mainly come from oceans in the future.Generally speaking,the exploration and production(E&P)cost of oil from offshore is much higher than that of oil from onshore,so it is more sensitive to oil price.However,in recent years,oil price has been hovering at a low level for a long time,almost close to or even lower than the E&P cost of oil,which directly affects the development of oilfields.Besides the influence of oil price,some oilfields present the characteristics of marginal reserve scale,short peak production period and output rapidly declining.There leads to short economic life period and makes the economic benefit close to or lower than oilfield’s hurdle rate,which increases the difficulty of offshore oilfield development.As an important part of oilfield development,Floating Production Storage and Offloading unit,its investment mode and rent mode directly affect overall oilfield’s rate of return and the economic life.This paper chooses lease mode as the research object based on the analysis of investment mode,and further puts forward rent mode related with oil price through the analysis of traditional rent mode,and illustrates the advantages and disadvantages of various rent modes and their applicability so that the lessor chooses the right mode to achieve Win-Win with Oil Company and promotes the development of oilfields under low oil price.
基金supported by National Natural Science Foundation of China Key program(51937003)。
文摘Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.
基金Project supported by special scientific research foundation for doctoral subjects
文摘The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.
文摘The paper chooses the secondary tectonic units of Sichuan Basin as the evaluation object, and considers regional crustal stability conditions, basic geological conditions, reservoir and cap rock conditions, storage potential conditions, geothermal conditions, research degree and potential resources conditions, social and economic conditions as first-level indexes. Based on collected data and a comprehensive analysis of 16 level-two indexes and 9 level-three indexes, and with the application of comprehensive index method, the conclusions regarding the suitability partition of the secondary tectonic units of Sichuan Basin are as follows: Central Sichuan low-flat structural belt is highly suitable for carbon dioxide geological storage, West Sichuan low-slope structural belt is relatively suitable, and SW low-slope structural belt is unsuitable for carbon dioxide geological storage, South Sichuan low-slope structural belt is relatively unsuitable, whereas East Sichuan high-slope faulted fold belt, and North Sichuan low-flat structural belt are fairly suitable for carbon dioxide geological storage. Based on the above, with a comprehensive analysis of corresponding hydrographic and geological conditions, and at the same time considering the non-cov- ered oil or gas resources and the buried structure, six CO2 geological target formations are identified, including lower Jurassic Ziliujing Group, upper Triassic Xujiahe Group, middle Triassic Leikoupo Group, lower Triassic Jialingjiang Group and Feixianguan Group, and lower Permian Qixia Group. This paper provides an important guidance and reference for the selection criteria of CO2 geologic storage sites in Sichuan Basin.
基金supported in part by the National Natural Science Foundation of China(No.62172036).
文摘Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.
文摘Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
基金the National Natural Science Foundation of Hubei Province(Grant No.2019CFB110)the fund of the Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials(Grant No.1-KF-2019).
文摘Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.
文摘We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results.