Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodo...Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.展开更多
In this study,an orthogonal experiment was performed to explore the optimal extraction technique of water-soluble polysaccharides from pumpkin.Moreover,the polysaccharides' capabilities to scavenge ·OH and DPPH&...In this study,an orthogonal experiment was performed to explore the optimal extraction technique of water-soluble polysaccharides from pumpkin.Moreover,the polysaccharides' capabilities to scavenge ·OH and DPPH· and their gross reducing power was measured with Vc and BHT as references.In the orthogonal experiment,various factors including temperature,extraction time,solid-liquid ratio,were optimized.The results showed that the polysaccharides extracted from pumpkin are endowed with strong in vitro antioxidant properties.Our study provided references for the extraction of pumpkin polysaccharides and for their use as antioxidants.展开更多
[Objective] This paper aims to study a new method of extracting pumpkin polysaccharide from pumpkin. Single factor experiments were conducted to examine the effects of extracting time,temperature,the solid-liquid rati...[Objective] This paper aims to study a new method of extracting pumpkin polysaccharide from pumpkin. Single factor experiments were conducted to examine the effects of extracting time,temperature,the solid-liquid ratio and pH value on the extraction yield of polysaccharide from pumpkin. [Method] The best enzyme ratio and extraction conditions for complex enzymes extraction were determined through orthogonal tests. Scavenging ·OH and O-2 activities of pumpkin polysaccharides were also investigated by salicylic acid and improved self-oxidation of o-pheno methods respectively. [Results] The results showed that the biggest extraction yield of polysaccharide from pumpkin can be got when adding 1% cellulose enzyme,1.5% pectinase,1.0% papain and Na2HPO4-citric acid buffer solution (pH was 4.6),and oscillating for 30 min under water at 40 ℃ with the solid-liquid ratio of 1:30. In addition,pumpkin polysaccharides had a strong activity of eliminating ·OH,but very weak activity to scavenge O-2. [Conclusion] This study provided basic data for research and application of Pumpkin polysaccharide.展开更多
基金Supported by National Natural Science Foundation (31071579)Key Program of Heilongjiang Province Science Foundation (ZP201013)
文摘Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.
基金Supported by the Key Science and Technology Project of Henan Province(102102110157)the Science Fund of Henan University of Urban Construction(2010JZD008)~~
文摘In this study,an orthogonal experiment was performed to explore the optimal extraction technique of water-soluble polysaccharides from pumpkin.Moreover,the polysaccharides' capabilities to scavenge ·OH and DPPH· and their gross reducing power was measured with Vc and BHT as references.In the orthogonal experiment,various factors including temperature,extraction time,solid-liquid ratio,were optimized.The results showed that the polysaccharides extracted from pumpkin are endowed with strong in vitro antioxidant properties.Our study provided references for the extraction of pumpkin polysaccharides and for their use as antioxidants.
基金Supported by the Key Scientific and Technological Project of Henan Province (102102110157)the Scientific Research Found Project of Henan University of Urban Construction (2010JZD008)~~
文摘[Objective] This paper aims to study a new method of extracting pumpkin polysaccharide from pumpkin. Single factor experiments were conducted to examine the effects of extracting time,temperature,the solid-liquid ratio and pH value on the extraction yield of polysaccharide from pumpkin. [Method] The best enzyme ratio and extraction conditions for complex enzymes extraction were determined through orthogonal tests. Scavenging ·OH and O-2 activities of pumpkin polysaccharides were also investigated by salicylic acid and improved self-oxidation of o-pheno methods respectively. [Results] The results showed that the biggest extraction yield of polysaccharide from pumpkin can be got when adding 1% cellulose enzyme,1.5% pectinase,1.0% papain and Na2HPO4-citric acid buffer solution (pH was 4.6),and oscillating for 30 min under water at 40 ℃ with the solid-liquid ratio of 1:30. In addition,pumpkin polysaccharides had a strong activity of eliminating ·OH,but very weak activity to scavenge O-2. [Conclusion] This study provided basic data for research and application of Pumpkin polysaccharide.