To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con...To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.展开更多
The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried unde...The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried under different working conditions with the soft-punch hydro-forming process, systematical know-how about why the LDR of a metal sheet is different, how working conditions influence qualities of a work-piece, and how the deformation takes place has been achieved when simulations are employed. All these results claim that the cup depth heavily weighs on the cup wall thinning rate, and a satisfied complex part can be achieved when the contacting time between the sheet and the female die is under our control well by a movable slider, which is fixed as the bottom of the female die.展开更多
Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. Th...Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.展开更多
The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Fi...The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-m...Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.展开更多
The dimpling defects caused by conventional hemispherical punch in doubly curved sheet metal reconfigurable die forming process were considered.The rotatable cubic punch (RCP) was developed to suppress the dimpling de...The dimpling defects caused by conventional hemispherical punch in doubly curved sheet metal reconfigurable die forming process were considered.The rotatable cubic punch (RCP) was developed to suppress the dimpling defects more effectively and conveniently.The former punch contacts with the work-piece through a point-surface contact and the latter punch contacts with the work-piece through a surface-surface contact.A series of stamping experiments were carried out using three different punches (hemispherical punch,RCP,chamfered-RCP) with three different loads.Some finite element simulations about the stamping experiments were carried out.The dimple scales were evaluated through the dimple depths.The corresponding data were obtained by 3-D scanning and FE result analysis respectively.A 3-D plate forming machine was developed,in which chamfered-RCP was adopted.Plate forming experiments were carried out on this machine.The stamped samples show a clear basis for the performance of chamfered-RCP.The study provided a means to guide the design of punches for dimpling suppression used in reconfigurable die.展开更多
Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is invest...Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.展开更多
The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis ...The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.展开更多
The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These d...The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.展开更多
Based on the elastoplastic mechanical properties of the weld and heat affected zone metals obtained by a nanoindentation test, a theoretical calculation model was established for the forming limit diagram(FLD) of ta...Based on the elastoplastic mechanical properties of the weld and heat affected zone metals obtained by a nanoindentation test, a theoretical calculation model was established for the forming limit diagram(FLD) of tailor-welded blanks(TWBs) on the basis of plastic constitutive relations and Hosford yield criteria. Hemispherical punch bulging tests were performed to verify the FLD theoretical calculation results. The results demonstrated that not only the FLD theoretical calculation of base materials but also that of TWBs had a good agreement with their experiments. Besides, poorer formability of TWBs caused its FLD significantly lower than that of base materials. The theoretical calculation model offers a reliable approach to obtain the specific FLD of TWBs.展开更多
Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample afte...Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample after applying sheet extrusion(size:68μm)changed to fine grains of 6.0 and 5.2μm after 3 and 5 passes of DECLE and following extrusion.The hot shear deformation behavior of samples was studied by developing constitutive equations based on shear punch test(SPT)results.SPT was carried out in the temperature range of 200−300℃ and strain rate range of 0.003−0.33 s^(–1).The activation energy of 125−139 kJ/mol and the stress exponent of 3.5−4.2 were calculated for all conditions,which indicated that dislocation creep,controlled by dislocation climb and solute drag mechanism,acted as the main hot deformation mechanism.It was concluded that material constants of n and Q are dependent on the microstructural factors such as grain size and second phase particle fraction,and the relationship of which was anticipated using a 3D surface curve.Moreover,the similar strong basal texture of extruded sheets gave rise to the same deformation mechanisms during SPT and similar n and Q values for ZK60 alloy.展开更多
The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. ...Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.展开更多
文摘To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming.
文摘The process of soft-punch hydro-forming was use.d to form some workpieces. However, it has not been completely understood until now. In this paper, based on some primary experiments, in which cups have been tried under different working conditions with the soft-punch hydro-forming process, systematical know-how about why the LDR of a metal sheet is different, how working conditions influence qualities of a work-piece, and how the deformation takes place has been achieved when simulations are employed. All these results claim that the cup depth heavily weighs on the cup wall thinning rate, and a satisfied complex part can be achieved when the contacting time between the sheet and the female die is under our control well by a movable slider, which is fixed as the bottom of the female die.
文摘Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.
文摘The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
文摘Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.
基金the National Natural Science Foundation of China(Nos.51379167 and 51779200)。
文摘The dimpling defects caused by conventional hemispherical punch in doubly curved sheet metal reconfigurable die forming process were considered.The rotatable cubic punch (RCP) was developed to suppress the dimpling defects more effectively and conveniently.The former punch contacts with the work-piece through a point-surface contact and the latter punch contacts with the work-piece through a surface-surface contact.A series of stamping experiments were carried out using three different punches (hemispherical punch,RCP,chamfered-RCP) with three different loads.Some finite element simulations about the stamping experiments were carried out.The dimple scales were evaluated through the dimple depths.The corresponding data were obtained by 3-D scanning and FE result analysis respectively.A 3-D plate forming machine was developed,in which chamfered-RCP was adopted.Plate forming experiments were carried out on this machine.The stamped samples show a clear basis for the performance of chamfered-RCP.The study provided a means to guide the design of punches for dimpling suppression used in reconfigurable die.
文摘Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.
基金This research was supported by the Chinese Foundation for Development of Geological Science and Technology (Project 49273162)the National Natural Science Foundation of China(Project 49273162)
文摘The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.
文摘The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.
基金Project(51275444) supported by the National Natural Science Foundation of ChinaProject(20121333110003) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(E2014203271) supported by the Natural Science Foundation–Steel and Iron Foundation of Hebei ProvinceChina
文摘Based on the elastoplastic mechanical properties of the weld and heat affected zone metals obtained by a nanoindentation test, a theoretical calculation model was established for the forming limit diagram(FLD) of tailor-welded blanks(TWBs) on the basis of plastic constitutive relations and Hosford yield criteria. Hemispherical punch bulging tests were performed to verify the FLD theoretical calculation results. The results demonstrated that not only the FLD theoretical calculation of base materials but also that of TWBs had a good agreement with their experiments. Besides, poorer formability of TWBs caused its FLD significantly lower than that of base materials. The theoretical calculation model offers a reliable approach to obtain the specific FLD of TWBs.
文摘Dual equal channel lateral extrusion(DECLE)process with various passes followed by sheet extrusion process was performed to produce fine-grained ZK60 alloy sheets.The coarse grain structure of the annealed sample after applying sheet extrusion(size:68μm)changed to fine grains of 6.0 and 5.2μm after 3 and 5 passes of DECLE and following extrusion.The hot shear deformation behavior of samples was studied by developing constitutive equations based on shear punch test(SPT)results.SPT was carried out in the temperature range of 200−300℃ and strain rate range of 0.003−0.33 s^(–1).The activation energy of 125−139 kJ/mol and the stress exponent of 3.5−4.2 were calculated for all conditions,which indicated that dislocation creep,controlled by dislocation climb and solute drag mechanism,acted as the main hot deformation mechanism.It was concluded that material constants of n and Q are dependent on the microstructural factors such as grain size and second phase particle fraction,and the relationship of which was anticipated using a 3D surface curve.Moreover,the similar strong basal texture of extruded sheets gave rise to the same deformation mechanisms during SPT and similar n and Q values for ZK60 alloy.
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.
文摘Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.