Punch loading is a loading scenario to study the fracture mechanism of materials at low strain rates.In this paper,three punch loading experimental patterns were chosen for the study of compressional punch loading.A p...Punch loading is a loading scenario to study the fracture mechanism of materials at low strain rates.In this paper,three punch loading experimental patterns were chosen for the study of compressional punch loading.A polymer bonded explosive(PBX) simulant was experimentally studied using the digital image correlation(DIC) method.The displacement and strain fields were obtained and the fracture behavior and failure mechanisms of samples were investigated under different punch loading conditions.Moreover,scanning electron microscope(SEM) was used to examine the region of the plastic flow and the damage in the material.The formation of slip bands,shear displacement and fracture of the hard phase particle,were observed on the boundary of the dead zone due to the large shear strains.展开更多
In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it i...In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.展开更多
基金Sponsored by the National Natural Science Foundation of China(10832003,11076032)the National Basic Research Program of China(613830202)the Program for New Century Excellent Talents(NCET-06-0159)
文摘Punch loading is a loading scenario to study the fracture mechanism of materials at low strain rates.In this paper,three punch loading experimental patterns were chosen for the study of compressional punch loading.A polymer bonded explosive(PBX) simulant was experimentally studied using the digital image correlation(DIC) method.The displacement and strain fields were obtained and the fracture behavior and failure mechanisms of samples were investigated under different punch loading conditions.Moreover,scanning electron microscope(SEM) was used to examine the region of the plastic flow and the damage in the material.The formation of slip bands,shear displacement and fracture of the hard phase particle,were observed on the boundary of the dead zone due to the large shear strains.
文摘In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae.