Bending tests were conducted on 23 ferrocement slab specimens with steel meshes and continuous CFRP fibers. Two, or three, or four CFRP slices are gathered as a rope and hence these ropes are arranged to form a grid t...Bending tests were conducted on 23 ferrocement slab specimens with steel meshes and continuous CFRP fibers. Two, or three, or four CFRP slices are gathered as a rope and hence these ropes are arranged to form a grid tied to a skeletal frame. The three patterns of slice reinforcement were used to reinforce cementitious slabs with or without conventional wire mesh reinforcement. The slabs were square and simply supported at their periphery with a clear span of 400 mm, and concentrically patch loaded to failure. For specimens designed to fail in flexure, the specimens reinforced with CFRP slices showed a smoother load deflection response and higher flexural capacity. For slabs designed to fail in punching shear, adding CFRP slices showed significant improvement in the ultimate shear capacity and ductility over reference specimens. Well distributed fine cracks of smaller width than control specimens were developed and no matrix spalling was observed.展开更多
The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan...The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan penetration into double layered soils is investigated numerically. The soil profile is set up as a stronger soil layer overlaying a softer soil layer, with the soil strength ratio (bottom soil strength / top soil strength) varied from 0.1 to 1.0 (1 means uniform soil). The bearing behaviour is discussed and the bearing capacity factors are given for various cases involving different layer thicknesses and different strength ratios of the two clay layers. The development of the plastic zones and the effect of soil self-weight on the bearing capacity are also discussed. From this study, it is found that, when a spudcan is distant from the soil layer boundary, the spudcan can be analysed with single soil layer data. However, when a spudcan becomes closer to the soil boundary layer, the influence of the lower soft soil layer is significant, and the bearing capacity of the spudcan decreases. The critical distance is an indication of the occurrence of “punch through' failure. The critical distance between the spudcan and the layer boundary is larger for a rough spudcan than the one for a smooth one, and the critical distance decreases with increasing soil strength ratio. The depth of cavity formed during initial spudcan penetration depends on the top layer soil strength, soil strength ratio and unit soil self-weight, and the cavity affects the spudcan bearing behaviour as well.展开更多
文摘Bending tests were conducted on 23 ferrocement slab specimens with steel meshes and continuous CFRP fibers. Two, or three, or four CFRP slices are gathered as a rope and hence these ropes are arranged to form a grid tied to a skeletal frame. The three patterns of slice reinforcement were used to reinforce cementitious slabs with or without conventional wire mesh reinforcement. The slabs were square and simply supported at their periphery with a clear span of 400 mm, and concentrically patch loaded to failure. For specimens designed to fail in flexure, the specimens reinforced with CFRP slices showed a smoother load deflection response and higher flexural capacity. For slabs designed to fail in punching shear, adding CFRP slices showed significant improvement in the ultimate shear capacity and ductility over reference specimens. Well distributed fine cracks of smaller width than control specimens were developed and no matrix spalling was observed.
文摘The spudcan foundation has been widely used in offshore engineering for jack-up rigs. However, “punch through' failure often occurs where a stronger soil layer overlays a softer soil layer. In this study, spudcan penetration into double layered soils is investigated numerically. The soil profile is set up as a stronger soil layer overlaying a softer soil layer, with the soil strength ratio (bottom soil strength / top soil strength) varied from 0.1 to 1.0 (1 means uniform soil). The bearing behaviour is discussed and the bearing capacity factors are given for various cases involving different layer thicknesses and different strength ratios of the two clay layers. The development of the plastic zones and the effect of soil self-weight on the bearing capacity are also discussed. From this study, it is found that, when a spudcan is distant from the soil layer boundary, the spudcan can be analysed with single soil layer data. However, when a spudcan becomes closer to the soil boundary layer, the influence of the lower soft soil layer is significant, and the bearing capacity of the spudcan decreases. The critical distance is an indication of the occurrence of “punch through' failure. The critical distance between the spudcan and the layer boundary is larger for a rough spudcan than the one for a smooth one, and the critical distance decreases with increasing soil strength ratio. The depth of cavity formed during initial spudcan penetration depends on the top layer soil strength, soil strength ratio and unit soil self-weight, and the cavity affects the spudcan bearing behaviour as well.