期刊文献+
共找到4,140篇文章
< 1 2 207 >
每页显示 20 50 100
Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models 被引量:2
1
作者 Yachen Xie Michael Z.Hou +1 位作者 Hejuan Liu Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1262-1279,共18页
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,... Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation. 展开更多
关键词 Rock anisotropy Direct shear creep Creep compliance Steady-creep rate Empirical model Creep constitutive model
下载PDF
Study of hydro-mechanical behaviours of rough rock fracture with shear dilatancy and asperities using shear-flow model
2
作者 Luyu Wang Weizhong Chen Qun Sui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4004-4016,共13页
The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of roug... The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions. 展开更多
关键词 Rock fracture Stress-seepage coupling shear-flow model Fracture asperity shear dilatancy
下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode
3
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints Brittle rock Direct shear test Damage-based constitutive model Parameters analysis
下载PDF
Predicting hepatocellular carcinoma: A new non-invasive model based on shear wave elastography
4
作者 Dong Jiang Yi Qian +9 位作者 Yi-Jun Gu Ru Wang Hua Yu Hui Dong Dong-Yu Chen Yan Chen Hao-Zheng Jiang Bi-Bo Tan Min Peng Yi-Ran Li 《World Journal of Gastroenterology》 SCIE CAS 2024年第25期3166-3178,共13页
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod... BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy. 展开更多
关键词 shear wave elastography Predicting model Microvascular invasion Antiviral treatment Hepatocellular carcinoma
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
5
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage:Theory,Experiments and Numerical Modelling
6
作者 Lisheng Luo Xinran Xie +2 位作者 Yongqiang Zhang Xiaofeng Zhang Xinyue Cui 《Journal of Renewable Materials》 SCIE EI 2023年第2期791-809,共19页
Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to pr... Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects,which usually depends on empirical parameters.There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage,and consequently,the failure of such glulam beams cannot be predicted effectively.To address these issues,an analytical method considering material nonlinearity was proposed for glulam beams,and the calculating equations of deflection and shear stress distribution for different failure modes were established.The proposed method was verified by experiments and numerical models under the corresponding conditions.Results showed that the theoretical calculations were in good agreement with experimental and numerical results,indicating that the equations proposed in this paper were reliable and accurate for such glulam beams with wood material in the elastic-plastic stage ignoring the influence of mechanic properties in radial and tangential directions of wood.Furthermore,the experimental results reported by the previous studies indicated that the method was applicable and could be used as a theoretical reference for predicting the failure of glulam beams. 展开更多
关键词 Glulam beams load-deflection relationship shear stress distribution elastic-plastic stage numerical model
下载PDF
Modeling the Undrained Shear Strength with Soil Index Properties for Niger Delta Soft Clays
7
作者 Chigozie Dimgba Ify L. Nwaogazie Akuro Big-Alabo 《Open Journal of Civil Engineering》 CAS 2023年第1期113-126,共14页
The aim of this study was to model the Undrained Shear Strength (USS) of soil found in the coastal region of the Niger Delta in Nigeria with some soil properties. The undrained shear strength (USS) is a key parameter ... The aim of this study was to model the Undrained Shear Strength (USS) of soil found in the coastal region of the Niger Delta in Nigeria with some soil properties. The undrained shear strength (USS) is a key parameter needed for most geotechnical/structural designs. Accurate determination of the USS of soft clays can be challenging to obtain in the laboratory due to the difficulty in remoulding the clay to its in-situ conditions before testing and more accurate test such as Cone Penetration test (CPT) can be quite expensive. This study was carried out at Escravos site which is located in Delta state, Nigeria. Three Boreholes were drilled and soil samples were collected at 0.75 m intervals up to a depth of 45 m. Laboratory tests were used to obtain the moisture content, bulk unit weight, liquid and plastic limit, while CPT was used in obtaining the undrained shear strength. Classification of the soil samples was done by adopting the Unified Soil Classification System and various models relating the USS with the soil properties were developed. The result showed that most of the soils at Escravos site were predominately inorganic clay of high plasticity which are problematic due to the expansion and shrinking nature of this type of soil. The model developed showed that the soil properties that gave the best fit with the USS were the moisture content and effective stress of the soil. The coefficient of determination (R<sup>2</sup>) and the root mean square error (RMSE) obtained for this model were 0.805 and 6.37 KN/m<sup>2</sup>, respectively. 展开更多
关键词 Undrained shear Strength Inorganic Clay Escravos Multiple Regression modelling
下载PDF
Simulation-Based Construction of Three-Dimensional Process Model for Punching Cartridge Cases 被引量:1
8
作者 Zhifang Wei Yechang Hu +1 位作者 Wu Lyu Jianzhong Gao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期276-284,共9页
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a... A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study. 展开更多
关键词 punching three-dimensional process model finite element simulation three-dimensional annotation
下载PDF
State-of-the-art on the anchorage performance of rock bolts subjected to shear load
9
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 Rock bolt shear load shear test Numerical simulation Analytical model
下载PDF
Mechanical behaviors of backfill-rock composites: Physical shear test and back-analysis
10
作者 Jie Xin Quan Jiang +5 位作者 Fengqiang Gong Lang Liu Chang Liu Qiang Liu Yao Yang Pengfei Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期807-827,共21页
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf... The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering. 展开更多
关键词 Physical simulation Backfill-rock composites shear failure CRACKING shear constitutive model
下载PDF
A nonlinear wake model of a wind turbine considering the yaw wake steering
11
作者 Yunzhou LI Zhiteng GAO +2 位作者 Shoutu LI Suiping QI Xiaoyu TANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期715-727,共13页
Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ... Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines. 展开更多
关键词 far wake wake model wake steering wind shear wind farm
下载PDF
An improved strain-softening constitutive model of granite considering the effect of crack deformation
12
作者 Yapeng Li Qiang Zhang +2 位作者 Qiuxin Gu Peinan Wu Binsong Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1202-1215,共14页
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str... This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite. 展开更多
关键词 STRAIN-SOFTENING Crack deformation effect Plastic shear strain Constitutive model
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
13
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope Stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Monitoring shear deformation of sliding zone via fiber Bragg grating and particle image velocimetry
14
作者 Deyang Wang Honghu Zhu +3 位作者 Guyu Zhou Wenzhao Yu Baojun Wang Wanhuan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期231-241,共11页
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between... Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors. 展开更多
关键词 LANDSLIDE shear band Fiber bragg grating(FBG) Particle image velocimetry(PIV) Sinusoidal model Strain‒displacement proportional COEFFICIENT
下载PDF
Punching Shear Behavior of RC Slab-Column Connections with Nonrectangular Columns
15
作者 刘文珽 黄承逵 张瑞鹤 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期70-77,共8页
This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength char... This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength characteristics of slab-column connections with nonrectangular columns under punching shear load are investigated. Nine specimens with the three kinds of nonrectangular columns and two reference specimens with square columns are tested. The tested ultimate loads, deformations, and failure modes of specimens are presented and discussed. Test results reveal that the punching shear strength and ductility of the connections with nonrectangular columns are higher than those of the corresponding connections with square columns, and also prove that the application of nonrectangular columns to flat-plate structure was feasible. Based on the test results, one method of calculating punching shear strength of connections with nonrectangular columns is proposed, which conforms with the current design practice of China. The test results on the punching shear strength are compared with the predictions of the formulas proposed by codes of several different countrie; and the predictions given by ACI code and China code are found to be conservative as the reinforcement ratio is increased. 展开更多
关键词 Nonrectangular columns Reinforced concrete Slab-column connections punching shear DUCTILITY
下载PDF
Shear wave velocity prediction:A review of recent progress and future opportunities
16
作者 John Oluwadamilola Olutoki Jian-guo Zhao +5 位作者 Numair Ahmed Siddiqui Mohamed Elsaadany AKM Eahsanul Haque Oluwaseun Daniel Akinyemi Amany H.Said Zhaoyang Zhao 《Energy Geoscience》 EI 2024年第4期36-54,共19页
Shear logs,also known as shear velocity logs,are used for various types of seismic analysis,such as determining the relationship between amplitude variation with offset(AVO)and interpreting multiple types of seismic d... Shear logs,also known as shear velocity logs,are used for various types of seismic analysis,such as determining the relationship between amplitude variation with offset(AVO)and interpreting multiple types of seismic data.This log is an important tool for analyzing the properties of rocks and interpreting seismic data to identify potential areas of oil and gas reserves.However,these logs are often not collected due to cost constraints or poor borehole conditions possibly leading to poor data quality,though there are various approaches in practice for estimating shear wave velocity.In this study,a detailed review of the recent advances in the various techniques used to measure shear wave(S-wave)velocity is carried out.These techniques include direct and indirect measurement,determination of empirical relationships between S-wave velocity and other parameters,machine learning,and rock physics models.Therefore,this study creates a collection of employed techniques,enhancing the existing knowledge of this significant topic and offering a progressive approach for practical implementation in the field. 展开更多
关键词 shear wave(S-wave)velocity Direct and indirect measurement Empirical relationship Artificial intelligence(AI) Machine learning Rock physics model
下载PDF
Effect of the Shear Reinforcement Type on the Punching Resistance of Concrete Slabs
17
作者 Kálmán Koris András Kozma István Bódi 《Open Journal of Civil Engineering》 2018年第1期1-11,共11页
Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of... Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of appropriate punching shear reinforcement in the slabs could be essential. To obtain the required structural strength and performance in slab-column junctions, the effect of the shear reinforcement type on the punching resistance must be known. For this purpose, numerous nonlinear finite element simulations were carried out to determine the behavior and punching shear strength of flat concrete slabs with different punching shear reinforcement types. The efficiency of different reinforcement types was also determined and compared. Accuracy of the numerical simulations was verified by experimental results. Based on the comparison of numerical results,?the partial factor for the design formula used in Eurocode 2 was calculated and was found to be higher than the actual one. 展开更多
关键词 FINITE ELEMENT Method punching shear REINFORCEMENT SLABS
下载PDF
nvestigation of Structural Steel Webs for Punching Shear
18
作者 Mustafa Mahamid Adeeb Rahman 《Journal of Civil Engineering and Architecture》 2015年第9期1126-1136,共11页
Shear tab connections or simple connections are widely used in structural steel structures. There are several limit states associated with these connections such bolt shear, bolt bearing, block shear, shear yielding a... Shear tab connections or simple connections are widely used in structural steel structures. There are several limit states associated with these connections such bolt shear, bolt bearing, block shear, shear yielding and shear rupture. A modified version of the shear tab has been developed during the last decade, which is extended shear tab connections. In developing design provisions for the extended shear tab connections, experimental work showed that there are additional limit states other than those mentioned above that limit the capacity of the extended shear connection. Extended shear tab connections could be used to frame beam-to-column or beam-to-girder. In the case where a beam is framed into girder, a new limit state develops in the web of the supporting girder. This limit state is punching shear of the supporting girder web which is due to a higher moment. The higher moment in extended shear tab connections is due to the larger moment arm (eccentricity) from the bolt line, the location of the shear force, to the support, which is in this case the girder's web. This study investigates the supporting girder web using experimental work, finite element analysis, and yield line theory. This paper shows the result of this investigation and proposes an evaluation of the web capacity equation which should be used when calculating the beam-to-girder connection capacity. 展开更多
关键词 Steel connections extended shear tab punching shear yield line beam web limit states
下载PDF
Experimental and simulation study on shear stress-induced erythrocyte damage based on vortex oscillator
19
作者 Xu Mei Li-Pu Zhao +1 位作者 Lian Hou Ying-Ying Zhong 《Biomedical Engineering Communications》 2024年第1期23-30,共8页
Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dyn... Background:Shear stress-induced erythrocyte damage,namely hemolysis,is an important problem in the development of blood-contacting medical devices such as mechanical circulatory support devices.Computational fluid dynamics simulation combined with hemolysis prediction models have been widely used to predict hemolysis.With the development of hemolysis prediction models,the new hemolysis prediction model requires more experimental data to verify.In addition,the difference of in vitro blood-shearing device also affect the accuracy of hemolysis prediction.Methods:To address these problems,a new in vitro blood-shearing device(vortex oscillator)was used to further verify the accuracy of the hemolysis prediction models,and to guide the optimal design of blood-contacting medical devices such as mechanical circulatory support devices.Firstly,the flow field information such as wall stress and velocity of the vortex oscillator under different speeds was analyzed.Secondly,different hemolysis prediction models were used to calculate hemolysis,and the predicted data was compared with the experimental data.Results and Conclusion:In this study,the flow field information inside the vortex oscillator at high rotational speeds was systematically investigated,and the prediction of hemolysis was carried out.The results showed that the predicted data of hemolysis was significantly different from the experimental data,which indicated that it was urgent to establish a standardized in vitro blood-shearing platform to provide a reference for accurate hemolysis prediction. 展开更多
关键词 CFD Hemolysis prediction model Vortex oscillator shear stress
下载PDF
Numerical Analysis on Magnetic-induced Shear Modulus of Magnetorheological Elastomers Based on Multi-chain Model 被引量:4
20
作者 朱应顺 龚兴龙 +2 位作者 党辉 张先舟 张培强 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第2期126-130,共5页
Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the in... Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better. 展开更多
关键词 Magnetorheological elastomers shear modulus Magnetic dipole model
下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部