Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol...Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.展开更多
The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient i...The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.展开更多
A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the ...A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the architecture of the transmission system,we propose vehicle performance parameters and performance indexes of a pure electric vehicle,a time-sharing driving strategy of dual motors.First,the parameters of the battery,motor,and transmission system are matched.Then,the electric vehicle transmission model is built in Amesim and the control strategy is designed in Simulink.With the optimization goal of improving the vehicle’s dynamic performance and driving range,the optimal parameters are determined through analysis.Finally,the characteristics of the motor are tested on the bench.The results show that the energy-saving potential of the timesharing driven double motor is higher,and the driving mileage of the double motor drive is increased by 4%.展开更多
This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A surv...This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A survey was designed to be answered via World Wide Web, throughout 3 months and only accessible to Portuguese inhabitants. The survey was composed by biographical and car ownership info, mobility patterns, awareness toward plug-in vehicle technologies, price premium and, finally, potential buyer’s attitudes regarding charging vehicles with electricity from the grid. An explanation of how each vehicle technology works in the case of a regular hybrid (HEV), a plug-in hybrid (PHEV) and a pure electric vehicle (EV) was provided. A total sample of 809 volunteers answered the survey, aged above 18 years old, 50% male and 50% female. The results allowed the estimation of the typical daily driving distance, the Utility Factor curve for plug-in hybrid future users, the charging preferences for future users of pure electric or plug-in hybrid vehicles and the necessary feebates to promote the market penetration of such technologies. Other correlations were also analyzed between driving patterns, type of owned car, price premium and the willingness to buy pure electric and plug-in hybrid vehicles. The main policy implications are that an increase of awareness campaigns is necessary if the government intends to support the plug-in electric vehicle technology widespread and a minimum of 5000 € investment per ton of avoided CO2 will be necessary in a year.展开更多
As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some ser...As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.展开更多
为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,...为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,利用改进鲸鱼算法优化控制参数,从而提高前轴电机制动力占比。同时,改进鲸鱼算法的自适应权重避免了算法迭代过程中陷入局部最优。通过仿真分析验证了在NEDC工况下,优化后的模糊控制策略相比优化前和传统控制策略在提高能量回收效果的同时,也满足了制动的有效性。展开更多
为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)...为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。展开更多
Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal c...Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.展开更多
四轮独立驱动的纯电动汽车(Pure Electric Vehicle,PEV)的理想横摆角速度确定方法不同于传统汽车。为了使电子稳定程序(Electronic Stability Program,ESP)控制系统介入的时机更为恰当,提高车辆对驾驶员意图的响应性能以及避免系统介入...四轮独立驱动的纯电动汽车(Pure Electric Vehicle,PEV)的理想横摆角速度确定方法不同于传统汽车。为了使电子稳定程序(Electronic Stability Program,ESP)控制系统介入的时机更为恰当,提高车辆对驾驶员意图的响应性能以及避免系统介入不适当对驾驶员正常行驶意图的干扰,针对一种由4个轮毂电机独立驱动的PEV,在线性二自由度模型确定车辆理想横摆角速度的基础上,利用Matlab/Simulink建立七自由度整车模型,考虑不同路面附着系数和各轮垂直载荷的影响,提出了适用于四轮独立驱动PEV理想横摆角速度的修正算法。通过对固定前轮转向角的纯电动汽车在纯路面、对接路面以及分离路面上理想横摆角速度随车速变化的仿真结果进行分析,得出了PEV理想横摆角速度的变化规律,为四轮独立驱动PEV理想横摆角速度的确定提供了理论基础。展开更多
文摘Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.
基金"863"program-saving and new energy vehicles of major projects funded project(2008AA11A154)
文摘The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.
基金Supported by Beijing Institute of Technology Research Fund Program for Young Scholars(3030011181911)the National Natural Science Foundation of China(520020025)。
文摘A pure electric vehicle driven by dual motors is taken as the research object and the driving scheme of the driving motor is improved to increase the transmission efficiency of existing electric vehicles.Based on the architecture of the transmission system,we propose vehicle performance parameters and performance indexes of a pure electric vehicle,a time-sharing driving strategy of dual motors.First,the parameters of the battery,motor,and transmission system are matched.Then,the electric vehicle transmission model is built in Amesim and the control strategy is designed in Simulink.With the optimization goal of improving the vehicle’s dynamic performance and driving range,the optimal parameters are determined through analysis.Finally,the characteristics of the motor are tested on the bench.The results show that the energy-saving potential of the timesharing driven double motor is higher,and the driving mileage of the double motor drive is increased by 4%.
文摘This paper presents a study undertaken to understand the plug-in vehicle acceptance and probable utilization behaviour in terms of charging habits and utility factor (probability of driving in electrical mode). A survey was designed to be answered via World Wide Web, throughout 3 months and only accessible to Portuguese inhabitants. The survey was composed by biographical and car ownership info, mobility patterns, awareness toward plug-in vehicle technologies, price premium and, finally, potential buyer’s attitudes regarding charging vehicles with electricity from the grid. An explanation of how each vehicle technology works in the case of a regular hybrid (HEV), a plug-in hybrid (PHEV) and a pure electric vehicle (EV) was provided. A total sample of 809 volunteers answered the survey, aged above 18 years old, 50% male and 50% female. The results allowed the estimation of the typical daily driving distance, the Utility Factor curve for plug-in hybrid future users, the charging preferences for future users of pure electric or plug-in hybrid vehicles and the necessary feebates to promote the market penetration of such technologies. Other correlations were also analyzed between driving patterns, type of owned car, price premium and the willingness to buy pure electric and plug-in hybrid vehicles. The main policy implications are that an increase of awareness campaigns is necessary if the government intends to support the plug-in electric vehicle technology widespread and a minimum of 5000 € investment per ton of avoided CO2 will be necessary in a year.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology(Grant No.2013BAG14B01)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2012EEL08)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530608)
文摘As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.
文摘为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,利用改进鲸鱼算法优化控制参数,从而提高前轴电机制动力占比。同时,改进鲸鱼算法的自适应权重避免了算法迭代过程中陷入局部最优。通过仿真分析验证了在NEDC工况下,优化后的模糊控制策略相比优化前和传统控制策略在提高能量回收效果的同时,也满足了制动的有效性。
文摘为了提高纯电动汽车电驱总成的故障诊断准确率,提出了一种基于粒子群优化(Particle Swarm Optimizing,PSO)算法的改进BP(Improved Back Propagation,IBP)神经网络(PSO-IBP)故障诊断方法。应用线性整流单元(Rectified Linear Unit,ReLU)作为BP神经网络的激活函数,通过粒子群优化算法对BP神经网络权值和阈值进行动态寻优,构建PSO-IBP模型。通过采集纯电动汽车电驱总成故障数据,分别对PSO-IBP神经网络模型、BP神经网络模型和概率神经网络(Probabilistic Neural Network,PNN)模型进行训练与仿真,结果表明,相比于BP神经网络方法及概率神经网络方法,基于PSO-IBP神经网络模型的纯电动汽车电驱总成故障诊断方法具有更高的准确率。
文摘Based on the lithium-ion battery pure electric vehicle (PEV) application, two capacity types of batteries are applied in thermal characteristic experiments. With the experimental comparison method, battery thermal characteristics and heat generation mechanism are studied. Experiments of batteries in cases of different dimensions, batteries with different air cooling velocity and two capacity types of batteries in free convection environment are put forward. Battery heat generation performance, heat dissipation performance and comparison of different capacity types' batteries are researched and summarized. Conclusions of battery heat generation and dissipation in PEV applications, important battery thermal management factors and suggestions are put forward.
文摘四轮独立驱动的纯电动汽车(Pure Electric Vehicle,PEV)的理想横摆角速度确定方法不同于传统汽车。为了使电子稳定程序(Electronic Stability Program,ESP)控制系统介入的时机更为恰当,提高车辆对驾驶员意图的响应性能以及避免系统介入不适当对驾驶员正常行驶意图的干扰,针对一种由4个轮毂电机独立驱动的PEV,在线性二自由度模型确定车辆理想横摆角速度的基础上,利用Matlab/Simulink建立七自由度整车模型,考虑不同路面附着系数和各轮垂直载荷的影响,提出了适用于四轮独立驱动PEV理想横摆角速度的修正算法。通过对固定前轮转向角的纯电动汽车在纯路面、对接路面以及分离路面上理想横摆角速度随车速变化的仿真结果进行分析,得出了PEV理想横摆角速度的变化规律,为四轮独立驱动PEV理想横摆角速度的确定提供了理论基础。