This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequen...We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.展开更多
We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quant...We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.展开更多
Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT...Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT was proposed to transmit the unknown states,in which EPR pairs,the entangled states,can be used as quantum channels.In this paper,we present two simple schemes for teleporting a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state respectively.Alice and Bob have shared an entangle state.Two Bell states are used as quantum channels.Then after Alice measuring her qubits and informing Bob her measurement results,Bob can perfectly reconstruct the original state by performing corresponding unitary operators on his qubits.It shown that a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state can be teleported perfectly,i.e.the success probabilities of our schemes are both 1.展开更多
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to...In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation(EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established.Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability;however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847147)the Natural Science Foundation of Jiangsu Province (Grant No BK2008437)+1 种基金Jiangsu Provincial Universities (Grant No 07KJB510066)the Science Foundation of Nanjing University of Information Science and Technology
文摘We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.
文摘We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.
基金The work is supported by the National Natural Science Foundation of China(Grant No.61672014)the National Cryptography Development Fund(Grant No.MMJJ20180109)+1 种基金the Natural Science Foundation of Guangdong Province(Grant No.2016A030313090)the Fundamental Research Funds for the Central Universities.
文摘Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT was proposed to transmit the unknown states,in which EPR pairs,the entangled states,can be used as quantum channels.In this paper,we present two simple schemes for teleporting a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state respectively.Alice and Bob have shared an entangle state.Two Bell states are used as quantum channels.Then after Alice measuring her qubits and informing Bob her measurement results,Bob can perfectly reconstruct the original state by performing corresponding unitary operators on his qubits.It shown that a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state can be teleported perfectly,i.e.the success probabilities of our schemes are both 1.
基金supported by the National Natural Science Foundation of China(Grant Nos.11375011 and 11372122)the Natural Science Foundation of Anhui Province(Grant No.1408085MA12)the 211 Project of Anhui University
文摘In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation(EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established.Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability;however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.