Spacecrafts with the pure gravity environment are of great significance in precision navigation, gravity field measurement for celestial bodies, and basic physics ex- periments. The radiometer effect is one of the imp...Spacecrafts with the pure gravity environment are of great significance in precision navigation, gravity field measurement for celestial bodies, and basic physics ex- periments. The radiometer effect is one of the important interfering factors on the proof mass in a purely gravitational orbit. For the gravity field measurement system based on the inner-formation flying, the relationship between the radiometer effect on the inner- satellite and the system parameters is studied by analytical and numerical methods. An approximate function of the radiometer effect suitable for the engineering computation and the correction factor are obtained. The analytic results show that the radiometer effect on the inner-satellite is proportional to the average pressure while inversely pro- portional to the average temperature in the outer-satellite cavity. The radiometer effect increases with the temperature difference in the cavity, and its minimum exists when the cavity radius increases. When the minimum of the radiometer effect arrives, the ratio of the cavity radius to the inner-satellite radius is 1.189 4. This constant is determined by the spherical cavity configuration and independent of the temperature and pressure distributions. When the ratio of the cavity radius to the inner-satellite radius is more than 10, it is believed that the cavity is large enough, the radiometer effect is approxi- mately proportional to the square of the inner-satellite radius, and the influence of the outer-satellite cavity radius on the radiometer effect can be ignored.展开更多
Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but ...Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 11002076)the National Defence Preresearch Foundation of China (No. 51320010201)
文摘Spacecrafts with the pure gravity environment are of great significance in precision navigation, gravity field measurement for celestial bodies, and basic physics ex- periments. The radiometer effect is one of the important interfering factors on the proof mass in a purely gravitational orbit. For the gravity field measurement system based on the inner-formation flying, the relationship between the radiometer effect on the inner- satellite and the system parameters is studied by analytical and numerical methods. An approximate function of the radiometer effect suitable for the engineering computation and the correction factor are obtained. The analytic results show that the radiometer effect on the inner-satellite is proportional to the average pressure while inversely pro- portional to the average temperature in the outer-satellite cavity. The radiometer effect increases with the temperature difference in the cavity, and its minimum exists when the cavity radius increases. When the minimum of the radiometer effect arrives, the ratio of the cavity radius to the inner-satellite radius is 1.189 4. This constant is determined by the spherical cavity configuration and independent of the temperature and pressure distributions. When the ratio of the cavity radius to the inner-satellite radius is more than 10, it is believed that the cavity is large enough, the radiometer effect is approxi- mately proportional to the square of the inner-satellite radius, and the influence of the outer-satellite cavity radius on the radiometer effect can be ignored.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)National Defence Pre-Research (Grant No. 51320010201)
文摘Spacecrafts free of all but gravitational forces are important in precision navigation,gravity field measurement and basic scientific research.The Inner-formation Flying System,one kind of spacecrafts free of all but gravitational forces,is used for gravitational field measurement with high precision.Restraining the interfering factors on the inner-satellite is one of the keys to gravitational field measurement.Radiometer effect and residual gas damping are both interfering forces on the inner-satellite caused by gas molecules.By analyzing the mechanism of the two forces,a coupled model for radiometer effect and residual gas damping was established,which contained the coupling term and reflected the actual force of gas molecules on the inner-satellite.The simulation results showed the coupling property of radiometer effect and residual gas damping:The actual force of gas molecules is directly proportional to the average pressure in the cavity and the largest cross-sectional area of the inner-satellite,but is inversely proportional to the square root of the average temperature in the cavity.