Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of no...As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.展开更多
Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purificati...Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.展开更多
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)...Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.展开更多
Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into ...Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.展开更多
A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sedime...A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sediments dredged from Ago Bay into value-added recycled products. The sintered products fabricated at 400℃ were found to be very effective adsorbents for the removal of heavy metals.展开更多
Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan...Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.展开更多
Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of...Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of laser-induced thermal convection. We introduce a heat source by using a fiber tip, which is fabricated into a non-adiabatic-tapered shape. In order to improve the laser power absorption efficiency, we coat a gold film with a thickness of 300 nm on the fiber tip. Due to absorption, the laser power transferred from the fiber to the water results in thermal convection. The forces generated from the thermal convection drive the microparticles to move towards the fiber tip, thereby performing microparticle collection and achieving water purification. Laser-induced thermal convection provides a simple, high-efficiency and low-cost method of collecting microparticles, which is a suitable and convenient for local water purification.展开更多
[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using tre...[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.展开更多
This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological...This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.展开更多
The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also wi...The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also with nutrients, the status of our water bodies has changed drastically. Excess nutrient load induces eutrophication processes and, as a result, massive cyanobacterial blooms during the summer times. As cyanobacteria are known to produce several toxic secondary metabolites, the so-called cyanotoxins, exhibiting hepato-, neuro- and cell-toxicity, a potential risk is given, when using this water. There is an urgent need to have a water purification system, which is able to cope with these natural toxins. Using aquatic plants as a Green Liver, the Green Liver System?, was developed, able to remove these natural pollutants. To test the ability of the Green Liver System?, several cyanobacterial toxins including artificial and natural mixtures were tested in a small-scale laboratory system. The results showed that within 7 - 14 days a combination of different aquatic macrophytes was able to remove a given toxin amount (10 μg·L-1) by 100%. The phytoremediation technology behind the Green Liver Systems? uses the simple ability of submerged aquatic plants to uptake, detoxify and store the toxins, without formation and release of further metabolites to the surrounding water.展开更多
Four peptides PSPP1,PSPP2,PSPP3 and PSPP4 were purified from the water-extract of Papaver somniferum pollen.Their sequences,with 21,17,13 and 16 amino acid residues respectively,have been determined by Edman degradati...Four peptides PSPP1,PSPP2,PSPP3 and PSPP4 were purified from the water-extract of Papaver somniferum pollen.Their sequences,with 21,17,13 and 16 amino acid residues respectively,have been determined by Edman degradation-N-terminal dansylation.PSPP2, PSPP3 and PSPP4 were synthesized using solid phase method.The immunopromotive activities of PSPP1,PSPP2,PSPP3,PSPP4 and the initially separated sample PSPP have been also observed by the methods of counting erythrocyte rosette forming cells(ERFC) and T-lymphocyte transformation test in vitro.展开更多
In order to provide reference for probiotics application in aquaculture, Bacillus subtilis (A), Streptococcus faecalis (B) and photosynthetic bacteria (C) were prepared according to the ratios of 9:1, 4:1, 1:...In order to provide reference for probiotics application in aquaculture, Bacillus subtilis (A), Streptococcus faecalis (B) and photosynthetic bacteria (C) were prepared according to the ratios of 9:1, 4:1, 1:1, 1:4 and 1:9 with 10^5 cfu/ml as the unit of concentration into 15 mixed microecological preparations, and their effects on COD, ammonia nitrogen, nitrite nitrogen and sulfide in pond water were investigated. The results showed that the mixed preparation of B. subtilis and photosynthetic bacteria at a ratio of 1:4 had the best effect in treating COD (P〈0.05), the mixed preparation of B. subtilis and S. faecalis at a ratio of 4:1 showed the best effect in treating ammonia nitrogen (P〈0.05), the mixed preparation of S. faecalis and photosynthetic bacteria at a ratio of 4:1 showed the best effect in treating nitrite nitrogen (P〈0.05), and the mixed preparation of Streptococcus faecalis and photosynthetic bacteria at a ratio of 9:1 had the best effect of reducing sulfide (P〈0.05).展开更多
A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusio...A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.展开更多
The experiment results of the nanosecond electromagnetic pulses action on water and water solutions containing radionuclides are described. An activity decrease of radionuclides solution is observed in many experiment...The experiment results of the nanosecond electromagnetic pulses action on water and water solutions containing radionuclides are described. An activity decrease of radionuclides solution is observed in many experiments. The results may be useful to create water purification devices from heavy metals and radionuclides.展开更多
<strong>Introduction:</strong> Haemodialysis is the most well-established form of treatment for ESRD. <strong>Method:</strong> To evaluate the implementation of standard criteria in heamodialys...<strong>Introduction:</strong> Haemodialysis is the most well-established form of treatment for ESRD. <strong>Method:</strong> To evaluate the implementation of standard criteria in heamodialysis water treatment units in Sharkia governorate and to determine the weak points in application of standard criteria, and reach the optimal standards to improve pt. outcomes, across the sectional study was conducted at 30 heamodialysis units of Sharkia governorate, using a modified questionnaire was developed based on MOH protocol and international guidelines such as CARI guidelines, AAMI guidelines and others by the researchers. All data were collected, tabulated and statistically analyzed using SPSS 22.0 for windows (SPSS Inc., Chicago, IL, USA). <strong>Results:</strong> Of the 30 units, the majority more than 80% of the units achieved the infrastructure and schematic structure, contain water purification devices, good infection control policies, proper chemical disinfection, good monitoring and quality control, accepted maintenance technician evaluation and collected processed water samples results matched decree of 63 for 1996. <strong>Conclusion:</strong> Most of the studied units nearly fulfilled the standard specifications of both MOH and AAMI. Ensuring that water quality meets AAMI standards and recommendations will minimize patient exposure to potential contaminants such as chemical hazards and endotoxemia associated with the use of the treated water for HD.展开更多
Conventional water purification technologies struggle to simultaneously address purification efficiency and energy consumption.Molecular orbital level surface micro-electric field(MEF)-driven water purification is an ...Conventional water purification technologies struggle to simultaneously address purification efficiency and energy consumption.Molecular orbital level surface micro-electric field(MEF)-driven water purification is an original and innovative concept conceived and developed by our group in recent years.The core idea involves creating electron-rich and electron-poor micro-areas on the nanomaterial surface,which drive pollutants or H_(2)O molecules to provide electrons in the electron-poor micro-areas while other environmental factors(such as H_(2)O_(2)and O_(2))obtain electrons in the electron-rich micro-areas.This process effectively utilizes the internal energy contained within wastewater and emerging contaminants(ECs).Centered on this core,this review systematically examines the discovery,construction,and characteristics of MEF and MEF-like systems and summarizes their application directions.The challenges,bottlenecks,and future development directions of MEF technology are also analyzed and discussed.Reviews of MEFs can facilitate the development of low-consumption,high-efficiency water purification technologies.展开更多
Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable ...Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable pore structure,poor mechanical properties,and limited functionality.To this end,this work presents a novel approach that combines a macro-micro double bionic strategy with a triple crosslinking method to develop a multifunctional alginate composite hydrogel filter(2%-SA-κCG-PVA-Ca^(2+),2%-SKP-Ca^(2+)for short)with a stable pore structure and superior mechanical properties,which possessed an umbrella-shaped structure resembling that of jellyfish.The 2%-SKPCa^(2+)filter was synthesized using polyvinyl alcohol(PVA)as a stable structure-directing agent,and sodium alginate(SA)andκ-carrageenan(κ-CG)as polymer hydrogels.The distinctive umbrellashaped hydrogel of 2%-SKP-Ca^(2+)filter,formed through the triple crosslinking method,overcomes the limitations of unstable pore structure and poor durability seen in hydrogels prepared by traditional crosslinking methods.Furthermore,the utilization of the 2%-SKP-Ca^(2+)filter in water treatment demonstrates its good selective permeability,excellent resistance to fouling,and extended longevity,which enables it to simultaneously achieve the multifunctional water purification and the coating of multi-substrate anti-fouling coatings.Therefore,not only does this research provide an efficient,multifunctional,highly pollution-resistant preparation method for designing a new filter,but it also confirms the application prospect of the macro-micro dual bionic strategy developed in this study in complex water treatment.展开更多
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need ...Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater.Therefore,we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock.The narrow band gap of the semiconductor material Fe_(3)O_(4) greatly reduces the recombination of electron-hole pairs,enhancing non-radiative relaxation light absorption.The abundantπorbitals in rGO promote electron excitation and thermal vibration between the lattices.Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters.The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m^(2)·hr),showing promising synergistic water purification properties.These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.展开更多
Devising a desirable nano-heterostructured photoelectrode based on the charge transfer kinetics mechanism is a pivotal strategy for implementing efficient photoelectrocatalytic(PEC)technology,since the charge separati...Devising a desirable nano-heterostructured photoelectrode based on the charge transfer kinetics mechanism is a pivotal strategy for implementing efficient photoelectrocatalytic(PEC)technology,since the charge separation and utilization efficiency of a photoelectrode is critical to its PEC performance.Herein,we fabricate a F–Co_(3)O_(4)@Bi_(2)WO_(6) core–shell hetero-array photoanode by coupling Bi_(2)WO_(6) nanosheets with F–Co_(3)O_(4) nanowires using a simple solvothermal solution method.The three-dimensional hierarchical heterostructure has a homogeneous chemical interface,helping it to promote an S-scheme-based carrier transport kinetics and maintain excellent cycling stability.Charge density difference calculations verify the electron migration trend from F–Co_(3)O_(4) to Bi_(2)WO_(6) upon hybridization and the formation of an internal electric field in the heterojunction,consistent with the S-scheme mechanism,which is identified by in situ irradiation X-ray photoelectron spectroscopy and by ultraviolet photoelectron spectroscopy.The optimized F–Co_(3)O_(4)@Bi_(2)WO_(6)-2 photoelectrode achieves high carrier utilization efficiency and exhibits superior PEC degradation performance for various organic pollutants,including reactive brilliant blue KN-R,rhodamine B,sulfamethoxazole,and bisphenol A.This work not only reveals that F–Co_(3)O_(4)@Bi_(2)WO_(6)-2 is effective for PEC water remediation but also provides a strategy to enhance carrier transport kinetics by designing binary oxides.展开更多
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金This work was supported by the Natural Science Foundation of China(No.50538090).
文摘As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.
文摘Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.
基金supported by the National Scientific Foundation of China(No.61974050,61704061,51805184,61974049)Key Laboratory of Non-ferrous Metals and New Materials Processing Technology of Ministry of Education/Guangxi Key Laboratory of Optoelectronic Materials and Devices open Fund(20KF-9)+2 种基金the Natural Science Foundation of Hunan Province of China(No.2018TP2003)Excellent youth project of Hunan Provincial Department of Education(No.18B111)State Key Laboratory of Crop Germplasm Innovation and Resource Utilization(No.17KFXN02).The authors thank the technical support from Analytical and Testing Center at Huazhong University of Science and Technology.
文摘Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.
基金supported by the National Natural Science Foundation of China(21878043,21576039,21421005 and U1608223)Program for Innovative Research Team in University(IRT_13R06)+4 种基金Fundamental Research Funds for the Central Universities(DUT18ZD218)Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering(XTCXYX04)Program for the Innovative Talents of Higher Learning Institutions of Liaoning(LCR2018066)Dalian High-level Talents Innovation Support Program(2019RD06)the Liaoning Revitalization Talent Program(1801006).
文摘Along with the environmental pollution, the scarcity of clean water seriously threatens the sustainable development of human society.Recently, the rapid development of solar evaporators has injected new vitality into the field of water purification. However, the industry faces a considerable challenge of achieving comprehensive purification of ions, especially the efficient removal of mercury ions. In this work, we introduce an ideal mercury-removal platform based on facilely and cost-effectively synthesized polysulfide nanoparticles(PSNs). Further development of PSN-functionalized reduced graphene oxide(PSN-rGO) aerogel evaporator results in achieving a high evaporation rate of 1.55 kg m^(-2)h^(-1)with energy efficiency of 90.8% under 1 sun. With the merits of interconnected porous structure and adsorption ability, the photothermal aerogel presents overall purification of heavy metal ions from wastewater. During solar desalination, salt ions can be rejected with long-term stability. Compared with traditional water purification technologies, this highly efficient solar evaporator provides a new practical method to utilize clean energy for clean water production.
文摘A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sediments dredged from Ago Bay into value-added recycled products. The sintered products fabricated at 400℃ were found to be very effective adsorbents for the removal of heavy metals.
文摘Rural landscape is not only a natural landscape,but also a cultural landscape.The improvement of rural environment in Lushi County is carried out under the background of“Building Beautiful Villages”.Through the plan of environmental improvement,the appearance of villages in rural areas will be significantly improved,and the gap between urban and rural areas will be shortened.This research addresses the problems of scarce water resources,imperfect rainwater collection facilities,and increased environmental pollution in rural areas,and explores a flexible,effective,and integrated landscape ecological water treatment system that integrates with natural ecosystems.The practice has shown that the flexible combination of different technical measures according to local conditions and the construction of ecological water self-circulation and self-purification systems can reduce maintenance costs and achieve sustainable landscape.The virtuous cycle of the revetment’s micro-ecology greatly improves the environmental carrying capacity of the landscape.Reasonable water management system is more flexible in dealing with unexpected problems.The thesis proposes landscape design strategies for water circulation and water purification in rural areas,and applies them to actual design cases.It attempts to introduce a combined treatment system to achieve a more diverse landscape concept and further explore the healthy and sustainable development of rural water environment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574061,61405043,and 61675053)the 111 Project,China(Grant No.B13015)the Fundamental Research Funds for Harbin Engineering University of China
文摘Water purification is required for environmental protection. In this paper, we propose and demonstrate a rapid, effective and low-cost approach to collect numerous impurities(microparticles) in water on the basis of laser-induced thermal convection. We introduce a heat source by using a fiber tip, which is fabricated into a non-adiabatic-tapered shape. In order to improve the laser power absorption efficiency, we coat a gold film with a thickness of 300 nm on the fiber tip. Due to absorption, the laser power transferred from the fiber to the water results in thermal convection. The forces generated from the thermal convection drive the microparticles to move towards the fiber tip, thereby performing microparticle collection and achieving water purification. Laser-induced thermal convection provides a simple, high-efficiency and low-cost method of collecting microparticles, which is a suitable and convenient for local water purification.
基金Supported by the Project for Science and Technology Innovation Team of Zhejiang Province,China
文摘[ Objective] The study aims to resolve water resource problem availably. [ Method] On the basis of wetland self-purification capacity, Yanshan River water was purified by Xixi Wetland, and the feasibility of using treated Yanshan River water for urban greening and watering road was analyzed. [Result] Compared with direct utilization of tap water, it is more economic to recycle Yanshan River water purified by Xixi Wetland for urban greening and watering read, with obvious economic, ecological and social benefits, so it is an effective method to address shortage of water resources and is worth spreading. [ Conclusion] It is feasible to use Yanshan River water purified by Xixi Wetland for urban greening and watering read.
文摘This paper studied the treatment of the landscape river in ChangZhou Scientific and Educational Town by a new integrative apparatus for water purification, which used ozone pre-oxidation-moDified clay-ozone biological activated carbon integrated process. The results indicate that the effectiveness of the algal removal with mentioned integrated process is much higher and the apparatus can operate stably. When the turbidity, chemical oxygen demand (CODMn), total nitrogen (TN), total phosphorus (TP) and algae densities of the raw water are 29-38 NTU, 7.45-7.79 mg/L, 2.496-2.981 mag/L, 0.237-0.255 mg/L and 5.78-7.94×10^8 cells/L respectively, it can be reduced to 0.8-1.7 NTU, 1.69-2.84 rag/L, 0.579-0.692mg/L, 0.013-0.038 mg/L, 0.06-0.38×10^8 cells/L. The average removal rates of turbidity, CODMn, TN, TP and algae density can reach 96.4%, 71.5%, 76.8%, 92.0% and 96.9% respectively. The treated water can meet the requirements of class Ⅰ- Ⅱ in Environmental Quality Standard, for Surface Water.
基金This research was in part supported by the National Research Foundation of Korea Grant funded by the Korean Government(MISP)(2013,University-Institute Cooperation Program)the Korean Institute of Science and Technology(KIST)Institutional Program(2E24280)The author would like to thank the BMBF for sponsoring the steps from laboratory to real life(BMBF,ChaoHu 02WT0529 and Innovate 01LL0904A).
文摘The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also with nutrients, the status of our water bodies has changed drastically. Excess nutrient load induces eutrophication processes and, as a result, massive cyanobacterial blooms during the summer times. As cyanobacteria are known to produce several toxic secondary metabolites, the so-called cyanotoxins, exhibiting hepato-, neuro- and cell-toxicity, a potential risk is given, when using this water. There is an urgent need to have a water purification system, which is able to cope with these natural toxins. Using aquatic plants as a Green Liver, the Green Liver System?, was developed, able to remove these natural pollutants. To test the ability of the Green Liver System?, several cyanobacterial toxins including artificial and natural mixtures were tested in a small-scale laboratory system. The results showed that within 7 - 14 days a combination of different aquatic macrophytes was able to remove a given toxin amount (10 μg·L-1) by 100%. The phytoremediation technology behind the Green Liver Systems? uses the simple ability of submerged aquatic plants to uptake, detoxify and store the toxins, without formation and release of further metabolites to the surrounding water.
文摘Four peptides PSPP1,PSPP2,PSPP3 and PSPP4 were purified from the water-extract of Papaver somniferum pollen.Their sequences,with 21,17,13 and 16 amino acid residues respectively,have been determined by Edman degradation-N-terminal dansylation.PSPP2, PSPP3 and PSPP4 were synthesized using solid phase method.The immunopromotive activities of PSPP1,PSPP2,PSPP3,PSPP4 and the initially separated sample PSPP have been also observed by the methods of counting erythrocyte rosette forming cells(ERFC) and T-lymphocyte transformation test in vitro.
基金Supported by Science and Technology Planning Project of Hunan Province(2012NK3097)Fund for Key Discipline Construction(Zoology)of Hunan Province during the"12thFive-Year Plan"(2015-007)+1 种基金Open Fund of Hunan Province Key Laboratory of Health Aquaculture and Processing(2015-011)Science and Technology Innovation Team Plan of Hunan Provincial Colleges and Universities(2014-031)~~
文摘In order to provide reference for probiotics application in aquaculture, Bacillus subtilis (A), Streptococcus faecalis (B) and photosynthetic bacteria (C) were prepared according to the ratios of 9:1, 4:1, 1:1, 1:4 and 1:9 with 10^5 cfu/ml as the unit of concentration into 15 mixed microecological preparations, and their effects on COD, ammonia nitrogen, nitrite nitrogen and sulfide in pond water were investigated. The results showed that the mixed preparation of B. subtilis and photosynthetic bacteria at a ratio of 1:4 had the best effect in treating COD (P〈0.05), the mixed preparation of B. subtilis and S. faecalis at a ratio of 4:1 showed the best effect in treating ammonia nitrogen (P〈0.05), the mixed preparation of S. faecalis and photosynthetic bacteria at a ratio of 4:1 showed the best effect in treating nitrite nitrogen (P〈0.05), and the mixed preparation of Streptococcus faecalis and photosynthetic bacteria at a ratio of 9:1 had the best effect of reducing sulfide (P〈0.05).
基金supported partially by Japan Society for the Promotion of Science(JSPS)KAKENHI(No.26249015)
文摘A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.
文摘The experiment results of the nanosecond electromagnetic pulses action on water and water solutions containing radionuclides are described. An activity decrease of radionuclides solution is observed in many experiments. The results may be useful to create water purification devices from heavy metals and radionuclides.
文摘<strong>Introduction:</strong> Haemodialysis is the most well-established form of treatment for ESRD. <strong>Method:</strong> To evaluate the implementation of standard criteria in heamodialysis water treatment units in Sharkia governorate and to determine the weak points in application of standard criteria, and reach the optimal standards to improve pt. outcomes, across the sectional study was conducted at 30 heamodialysis units of Sharkia governorate, using a modified questionnaire was developed based on MOH protocol and international guidelines such as CARI guidelines, AAMI guidelines and others by the researchers. All data were collected, tabulated and statistically analyzed using SPSS 22.0 for windows (SPSS Inc., Chicago, IL, USA). <strong>Results:</strong> Of the 30 units, the majority more than 80% of the units achieved the infrastructure and schematic structure, contain water purification devices, good infection control policies, proper chemical disinfection, good monitoring and quality control, accepted maintenance technician evaluation and collected processed water samples results matched decree of 63 for 1996. <strong>Conclusion:</strong> Most of the studied units nearly fulfilled the standard specifications of both MOH and AAMI. Ensuring that water quality meets AAMI standards and recommendations will minimize patient exposure to potential contaminants such as chemical hazards and endotoxemia associated with the use of the treated water for HD.
基金supported by the National Natural Science Foundation of China(52350005,52122009 and 51838005)the Introduced Innovative R&D Team Project under the"Pearl River Talent Recruitment Program"of Guangdong Province(2019ZT08L387)
文摘Conventional water purification technologies struggle to simultaneously address purification efficiency and energy consumption.Molecular orbital level surface micro-electric field(MEF)-driven water purification is an original and innovative concept conceived and developed by our group in recent years.The core idea involves creating electron-rich and electron-poor micro-areas on the nanomaterial surface,which drive pollutants or H_(2)O molecules to provide electrons in the electron-poor micro-areas while other environmental factors(such as H_(2)O_(2)and O_(2))obtain electrons in the electron-rich micro-areas.This process effectively utilizes the internal energy contained within wastewater and emerging contaminants(ECs).Centered on this core,this review systematically examines the discovery,construction,and characteristics of MEF and MEF-like systems and summarizes their application directions.The challenges,bottlenecks,and future development directions of MEF technology are also analyzed and discussed.Reviews of MEFs can facilitate the development of low-consumption,high-efficiency water purification technologies.
基金received generous support from multiple sources,including the Zhejiang Provincial Natural Science Foundation of China(No.LY23D060004)the Science and Technology Planning Project of Zhoushan,China(Nos.2022C41005 and 2019C21007)the National Natural Science Foundation of China(No.51606168).
文摘Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable pore structure,poor mechanical properties,and limited functionality.To this end,this work presents a novel approach that combines a macro-micro double bionic strategy with a triple crosslinking method to develop a multifunctional alginate composite hydrogel filter(2%-SA-κCG-PVA-Ca^(2+),2%-SKP-Ca^(2+)for short)with a stable pore structure and superior mechanical properties,which possessed an umbrella-shaped structure resembling that of jellyfish.The 2%-SKPCa^(2+)filter was synthesized using polyvinyl alcohol(PVA)as a stable structure-directing agent,and sodium alginate(SA)andκ-carrageenan(κ-CG)as polymer hydrogels.The distinctive umbrellashaped hydrogel of 2%-SKP-Ca^(2+)filter,formed through the triple crosslinking method,overcomes the limitations of unstable pore structure and poor durability seen in hydrogels prepared by traditional crosslinking methods.Furthermore,the utilization of the 2%-SKP-Ca^(2+)filter in water treatment demonstrates its good selective permeability,excellent resistance to fouling,and extended longevity,which enables it to simultaneously achieve the multifunctional water purification and the coating of multi-substrate anti-fouling coatings.Therefore,not only does this research provide an efficient,multifunctional,highly pollution-resistant preparation method for designing a new filter,but it also confirms the application prospect of the macro-micro dual bionic strategy developed in this study in complex water treatment.
基金supported by the National Natural Science Foundation of China(No.22106105)the Innovation Program of Shanghai Municipal Education Commission(No.2019–01–07–00-E00015)+4 种基金the Shanghai Scientific and Technological Innovation Project(Nos.21DZ1206300 and 19JC1410402)the Scientific and Technological Innovation Team for Green Catalysis and Energy Material in Yunnan Institutions of Higher Learning,General Project of Yunnan Province Science and Technology Department(No.202101BA070001–050)the Central Guidance on Local Science and Technology Development Fund of Shanghai(No.YDZX20213100003002)the Science and Technology Commission of Shanghai Municipality(No.20060502200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,and Shanghai Sailing Program(No.20YF1432200)。
文摘Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater.Despite much effort made into photothermal materials,there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater.Therefore,we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock.The narrow band gap of the semiconductor material Fe_(3)O_(4) greatly reduces the recombination of electron-hole pairs,enhancing non-radiative relaxation light absorption.The abundantπorbitals in rGO promote electron excitation and thermal vibration between the lattices.Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters.The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m^(2)·hr),showing promising synergistic water purification properties.These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
基金supported by the National Natural Science Foundation of China(21875026,21878031)the Program for Liaoning Excellent Talents in University(LR2014013)+2 种基金the Science and Technology Foundation of Liaoning Province(No.201602052)the Natural Science Foundation of Liaoning Province(No.20170520427)by the Liaoning Revitalization Talents Program(XLYC1802124).
文摘Devising a desirable nano-heterostructured photoelectrode based on the charge transfer kinetics mechanism is a pivotal strategy for implementing efficient photoelectrocatalytic(PEC)technology,since the charge separation and utilization efficiency of a photoelectrode is critical to its PEC performance.Herein,we fabricate a F–Co_(3)O_(4)@Bi_(2)WO_(6) core–shell hetero-array photoanode by coupling Bi_(2)WO_(6) nanosheets with F–Co_(3)O_(4) nanowires using a simple solvothermal solution method.The three-dimensional hierarchical heterostructure has a homogeneous chemical interface,helping it to promote an S-scheme-based carrier transport kinetics and maintain excellent cycling stability.Charge density difference calculations verify the electron migration trend from F–Co_(3)O_(4) to Bi_(2)WO_(6) upon hybridization and the formation of an internal electric field in the heterojunction,consistent with the S-scheme mechanism,which is identified by in situ irradiation X-ray photoelectron spectroscopy and by ultraviolet photoelectron spectroscopy.The optimized F–Co_(3)O_(4)@Bi_(2)WO_(6)-2 photoelectrode achieves high carrier utilization efficiency and exhibits superior PEC degradation performance for various organic pollutants,including reactive brilliant blue KN-R,rhodamine B,sulfamethoxazole,and bisphenol A.This work not only reveals that F–Co_(3)O_(4)@Bi_(2)WO_(6)-2 is effective for PEC water remediation but also provides a strategy to enhance carrier transport kinetics by designing binary oxides.