Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classi...Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.展开更多
The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an i...The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.展开更多
配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生...配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order princip...Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12071019).
文摘Orthogonal matching pursuit(OMP for short)algorithm is a popular method of sparse signal recovery in compressed sensing.This paper applies OMP to the sparse polynomial reconstruction problem.Distinguishing from classical research methods using mutual coherence or restricted isometry property of the measurement matrix,the recovery guarantee and the success probability of OMP are obtained directly by the greedy selection ratio and the probability theory.The results show that the failure probability of OMP given in this paper is exponential small with respect to the number of sampling points.In addition,the recovery guarantee of OMP obtained through classical methods is lager than that of ℓ_(1)-minimization whatever the sparsity of sparse polynomials is,while the recovery guarantee given in this paper is roughly the same as that of ℓ_(1)-minimization when the sparsity is less than 93.Finally,the numerical experiments verify the availability of the theoretical results.
基金the Basic Science Research Program through the National Research Foundation of Korea (NRF-2014R1A1A2057735)the Kyung Hee University in 2016 [KHU-20160601]
文摘The pursuit problem is a well-known problem in computer science. In this problem, a group of predator agents attempt to capture a prey agent in an environment with various obstacle types, partial observation, and an infinite grid-world. Predator agents are applied algorithms that use the univector field method to reach the prey agent, strategies for avoiding obstacles and strategies for cooperation between predator agents. Obstacle avoidance strategies are generalized and presented through strategies called hitting and following boundary(HFB); trapped and following shortest path(TFSP); and predicted and following shortest path(PFSP). In terms of cooperation, cooperation strategies are employed to more quickly reach and capture the prey agent. Experimental results are shown to illustrate the efficiency of the method in the pursuit problem.
文摘配电网参数受天气条件和负载条件等因素影响会发生变化。由于传感装置安装有限、数据延时传输等因素,无法实时获得配电网准确参数,进而给传统故障定位方法的精度带来影响。针对以上问题,通过建立配电网数字孪生模型,基于配电网数字孪生模型的参数自修正技术,提出了一种定位模型随参数变化动态校正的配电网故障定位方法。同时,搭建了基于数字孪生服务器和实时数字仿真系统(real time digital system, RTDS)的数字孪生平台,实现了配电网实时的物理模型和数字孪生模型的同步运行。在算例仿真中,利用该数字孪生平台,验证了基于数字孪生技术的配电网故障定法方法。结果表明,该方法可在各类系统运行条件下实时修正配电网参数,显著提高配电网故障定位的速度和精度。
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金supported by the National Natural Science Foundationof China(51275348)
文摘Recovering the low-rank structure of data matrix from sparse errors arises in the principal component pursuit (PCP). This paper exploits the higher-order generalization of matrix recovery, named higher-order principal component pursuit (HOPCP), since it is critical in multi-way data analysis. Unlike the convexification (nuclear norm) for matrix rank function, the tensorial nuclear norm is stil an open problem. While existing preliminary works on the tensor completion field provide a viable way to indicate the low complexity estimate of tensor, therefore, the paper focuses on the low multi-linear rank tensor and adopt its convex relaxation to formulate the convex optimization model of HOPCP. The paper further propose two algorithms for HOPCP based on alternative minimization scheme: the augmented Lagrangian alternating direction method (ALADM) and its truncated higher-order singular value decomposition (ALADM-THOSVD) version. The former can obtain a high accuracy solution while the latter is more efficient to handle the computationally intractable problems. Experimental results on both synthetic data and real magnetic resonance imaging data show the applicability of our algorithms in high-dimensional tensor data processing.