Due to the influence of material characteristics and winding power, single output electromagnet has limited ability to improve the dynamic characteristic of electro-hydraulic valve. Therefore, an electromechanical con...Due to the influence of material characteristics and winding power, single output electromagnet has limited ability to improve the dynamic characteristic of electro-hydraulic valve. Therefore, an electromechanical converter with double push rods is proposed in this paper, which can simultaneously output two electromagnetic forces, can push or pull the valve core and sleeve according to the current direction and realize rapid operation of load. According to the electromagnetic principle and the magnetic circuit analysis method, the mathematical model and equivalent circuit of the electromechanical converter with double push rods are established. Through the finite element simulation model of the electromechanical converter with double push rods with the same magnetization directions, the changing rules of its magnetic field distribution and force–displacement behaviors are studied and analyzed. According to the analysis results, the electromagnetic mechanical parameters and mechanical structure of the electromechanical converter with double push rods are determined, and the prototype is made. The test platform for the push-pull characteristics of the electromechanical converter with double push rods is built, and its static and dynamic characteristics are tested and analyzed. The results show that the thrust and pull output characteristics of the internal and external push rods are basically consistent with the simulation output, and proportional to the current density of the coil;the push-pull hysteresis of internal and external push rods output force is less than 5%;and the dynamic time response characteristics of the displacement and force are obtained. The hysteresis e ect of output force is improved e ectively through the H bridge drive control circuit modulated by PWM. Compared with the displacement response of a singlewinding electromagnet with a similar volume, it can e ectively improve the dynamic displacement response. Followup work will further optimize the structure of the electromechanical converter and test the corresponding pilot valve. The research results provide a new theory for improving the output characteristics of electro-hydraulic pilot valve and have an extremely high engineering application value and broad application prospect.展开更多
The reliability of aerospace relay directly influences the reliability of thewhole system. The analysis and research on the optimum position of aerospace relay's pushing rodare an important process of aerospace re...The reliability of aerospace relay directly influences the reliability of thewhole system. The analysis and research on the optimum position of aerospace relay's pushing rodare an important process of aerospace relay reliability design. In the past, most researches weredone for electromagnetic systems and spring systems of aerospace relays. However, there was not anyresearch on the position of the pushing rod. An analytical method for the optimum position ofaerospace relay's pushing rod is presented in this paper. From four aspects, including theelectromagnetic force and torque, work done by the electromagnetic force and displacement, theoptimum position of a pushing rod is investigated based on the analysis of a straight spring system.The conclusions can be used to direct the optimum design and assembling of aerospace relays.展开更多
基金Supported by National Natural Science Foundation for Young Scientists of China(Grant No.51505317)Shanxi Provincial Natural Science Foundation of China(Grant No.201601D102039)
文摘Due to the influence of material characteristics and winding power, single output electromagnet has limited ability to improve the dynamic characteristic of electro-hydraulic valve. Therefore, an electromechanical converter with double push rods is proposed in this paper, which can simultaneously output two electromagnetic forces, can push or pull the valve core and sleeve according to the current direction and realize rapid operation of load. According to the electromagnetic principle and the magnetic circuit analysis method, the mathematical model and equivalent circuit of the electromechanical converter with double push rods are established. Through the finite element simulation model of the electromechanical converter with double push rods with the same magnetization directions, the changing rules of its magnetic field distribution and force–displacement behaviors are studied and analyzed. According to the analysis results, the electromagnetic mechanical parameters and mechanical structure of the electromechanical converter with double push rods are determined, and the prototype is made. The test platform for the push-pull characteristics of the electromechanical converter with double push rods is built, and its static and dynamic characteristics are tested and analyzed. The results show that the thrust and pull output characteristics of the internal and external push rods are basically consistent with the simulation output, and proportional to the current density of the coil;the push-pull hysteresis of internal and external push rods output force is less than 5%;and the dynamic time response characteristics of the displacement and force are obtained. The hysteresis e ect of output force is improved e ectively through the H bridge drive control circuit modulated by PWM. Compared with the displacement response of a singlewinding electromagnet with a similar volume, it can e ectively improve the dynamic displacement response. Followup work will further optimize the structure of the electromechanical converter and test the corresponding pilot valve. The research results provide a new theory for improving the output characteristics of electro-hydraulic pilot valve and have an extremely high engineering application value and broad application prospect.
文摘The reliability of aerospace relay directly influences the reliability of thewhole system. The analysis and research on the optimum position of aerospace relay's pushing rodare an important process of aerospace relay reliability design. In the past, most researches weredone for electromagnetic systems and spring systems of aerospace relays. However, there was not anyresearch on the position of the pushing rod. An analytical method for the optimum position ofaerospace relay's pushing rod is presented in this paper. From four aspects, including theelectromagnetic force and torque, work done by the electromagnetic force and displacement, theoptimum position of a pushing rod is investigated based on the analysis of a straight spring system.The conclusions can be used to direct the optimum design and assembling of aerospace relays.