Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems...Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems at a time is a challenging task.We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching.The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching andmax-pooling.Finally,the input image is recognized using a robust kernel representation method using extracted features.The qualitative and quantitative analysis of the proposed method is carried on benchmark image datasets.Experimental results showed that the proposed method performs better in terms of standard performance evaluation parameters as compared to state-of-the-art methods on AR,ORL,LFW,and FERET face recognition datasets.展开更多
在对障碍物进行测距的过程中,双目视觉测距技术拥有的成本低、高效、精确度高与构造简单的特点。鉴于此,设计一种基于灰度值金字塔图像匹配算法的双目视觉测距系统。通过搭建立体视觉硬件平台,利用LabVIEW软件平台编写硬件控制和测距程...在对障碍物进行测距的过程中,双目视觉测距技术拥有的成本低、高效、精确度高与构造简单的特点。鉴于此,设计一种基于灰度值金字塔图像匹配算法的双目视觉测距系统。通过搭建立体视觉硬件平台,利用LabVIEW软件平台编写硬件控制和测距程序,采用灰度值金字塔算法进行双目图像匹配获取视差数据,利用几何关系求出障碍物深度计算公式,并且在实验室中随机选用8个标志物进行仿真实验,检验理论深度与真实距离间的误差率。实验表明,通过视差数据求得的理论深度信息,所选特征点清晰、纹理复杂度较高的ROI(Region of Interest)区域的误差率在2%左右,特征点模糊、纹理复杂度较低区域误差率在5%左右,图像匹配相似度在900左右,在允许的误差范围内验证了图像匹配的准确性和双目测距系统的可靠性。展开更多
针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对...针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。展开更多
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdul Aziz University,Jeddah,under Grant No.KEP-10-611-42.The authors,therefore,acknowledge with thanks DSR technical and financial support.
文摘Face recognition is a big challenge in the research field with a lot of problems like misalignment,illumination changes,pose variations,occlusion,and expressions.Providing a single solution to solve all these problems at a time is a challenging task.We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching.The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching andmax-pooling.Finally,the input image is recognized using a robust kernel representation method using extracted features.The qualitative and quantitative analysis of the proposed method is carried on benchmark image datasets.Experimental results showed that the proposed method performs better in terms of standard performance evaluation parameters as compared to state-of-the-art methods on AR,ORL,LFW,and FERET face recognition datasets.
文摘在对障碍物进行测距的过程中,双目视觉测距技术拥有的成本低、高效、精确度高与构造简单的特点。鉴于此,设计一种基于灰度值金字塔图像匹配算法的双目视觉测距系统。通过搭建立体视觉硬件平台,利用LabVIEW软件平台编写硬件控制和测距程序,采用灰度值金字塔算法进行双目图像匹配获取视差数据,利用几何关系求出障碍物深度计算公式,并且在实验室中随机选用8个标志物进行仿真实验,检验理论深度与真实距离间的误差率。实验表明,通过视差数据求得的理论深度信息,所选特征点清晰、纹理复杂度较高的ROI(Region of Interest)区域的误差率在2%左右,特征点模糊、纹理复杂度较低区域误差率在5%左右,图像匹配相似度在900左右,在允许的误差范围内验证了图像匹配的准确性和双目测距系统的可靠性。
文摘针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。