We derive the conditions for the existence of the unique solution of the two scale integral equation and the form of the solution, according to the method of the construction of the dyadic scale function. We give the ...We derive the conditions for the existence of the unique solution of the two scale integral equation and the form of the solution, according to the method of the construction of the dyadic scale function. We give the construction of the dyadic wavelet and its necessary and sufficient condition. As an application, we also develop a pyramid algorithm of the dyadic wavelet decomposition.展开更多
为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部...为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。展开更多
针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提...针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network...With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.展开更多
文摘We derive the conditions for the existence of the unique solution of the two scale integral equation and the form of the solution, according to the method of the construction of the dyadic scale function. We give the construction of the dyadic wavelet and its necessary and sufficient condition. As an application, we also develop a pyramid algorithm of the dyadic wavelet decomposition.
文摘为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。
文摘针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金funded by the Fundamental Research Project of CNPC Geophysical Key Lab(2022DQ0604-4)the Strategic Cooperation Technology Projects of China National Petroleum Corporation and China University of Petroleum-Beijing(ZLZX 202003)。
文摘With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.