The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference b...The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.展开更多
As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify ...As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify and expand applications of CBp.This work focuses on the preparation of activated carbon(AC)from CBp using the physicochemical activation of carbon dioxide(CO_(2))and potassium hydroxide(KOH).Thereafter,AC is applied to the electrode of the electrical double-layer capacitor(EDLC).The AC prepared by CO_(2)/KOH activation exhibited a hierarchical pore structure.The specific surface area increased from 415 to 733 m^(2)g^(−1),and in combination with low ash content of 1.51%,ensured abundant ion diffusion channels and active sites to store charge.The EDLC comprising the AC(AC-2)electrode prepared by excitation of CO_(2)(300 sccm)and KOH had a reasonable gravimetric specific capacitance of 192 F g^(−1)at 0.5 A g^(−1),and exhibited a good rate capability of 73%at 50 A g^(−1)in a three-electrode system.Moreover,the EDLC device comprising the AC-2 electrode delivered excellent cycling stability(capacitance retention of 106%after 10000 cycles at 2 A g^(−1)in a two-electrode system).Furthermore,a symmetric supercapacitor based on an AC electrode that exhibits a supreme energy density of 4.7 Wh kg^(−1)and a maximum power density of 6362.6 W kg^(−1)is demonstrated.展开更多
CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus an...CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus and conductivity than the polyacrylonitrile (PAN)- and pitch-based carbon fibers, which have been prepared on an industrial scale. It has been reported that the reaction temperature of VGCF from methane on Fe catalysts is higher展开更多
文摘The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.
基金supported by the National Natural Science Foundation of China (Grant No. 12175089)the National Key Research and Development Program of China (Grant No. 2019YFC1907900)+4 种基金the Key Research and Development Program of Yunnan Province (Grant No. 202103AF140006)the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (Grant No. 202001AW070004)the Freely Exploring Fund for Academicians in Yunnan Province (Grant No.202005AA160008)the Key Laboratory of Resource Chemistry,Ministry of Education (Grant No. KLRC_ME2001)the Applied Basic Research Programs of Sichuan Provincial Science and Technology Department(Grant No. 2021yj0007)
文摘As the quantity of waste tires increases,more pyrolysis carbon black(CBp),a type of low value-added carbon black,is being produced.However,the application of CBp has been limited.Therefore,it is necessary to identify and expand applications of CBp.This work focuses on the preparation of activated carbon(AC)from CBp using the physicochemical activation of carbon dioxide(CO_(2))and potassium hydroxide(KOH).Thereafter,AC is applied to the electrode of the electrical double-layer capacitor(EDLC).The AC prepared by CO_(2)/KOH activation exhibited a hierarchical pore structure.The specific surface area increased from 415 to 733 m^(2)g^(−1),and in combination with low ash content of 1.51%,ensured abundant ion diffusion channels and active sites to store charge.The EDLC comprising the AC(AC-2)electrode prepared by excitation of CO_(2)(300 sccm)and KOH had a reasonable gravimetric specific capacitance of 192 F g^(−1)at 0.5 A g^(−1),and exhibited a good rate capability of 73%at 50 A g^(−1)in a three-electrode system.Moreover,the EDLC device comprising the AC-2 electrode delivered excellent cycling stability(capacitance retention of 106%after 10000 cycles at 2 A g^(−1)in a two-electrode system).Furthermore,a symmetric supercapacitor based on an AC electrode that exhibits a supreme energy density of 4.7 Wh kg^(−1)and a maximum power density of 6362.6 W kg^(−1)is demonstrated.
文摘CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus and conductivity than the polyacrylonitrile (PAN)- and pitch-based carbon fibers, which have been prepared on an industrial scale. It has been reported that the reaction temperature of VGCF from methane on Fe catalysts is higher