A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation o...A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.展开更多
Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup...Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup and violent turbulence,and correspondingly faster heat transfer.In this work,the heat transfer behavior in the cyclone pyrolyzer is specifically studied using the computational fluid dynamics-discrete element method.The simulation results reveal that the gas-solids heat convection contributes mainly to the heat transfer process,and the heat radiation and conduction are relatively small and almost negligible,respectively.Compared with the downer pyrolyzer under the same operating conditions,the heating rate is significantly increased in the cyclone pyrolyzer.By analyzing the flow characteristics in the cyclone pyrolyzer,it is found that the region of high convective heat transfer rate coincides with that of natural cyclone length.Additionally,the final coal temperature increases with the increase of gas velocity and exists a maximum value.These results can offer some qualitative understanding of the heat transfer behavior in the cyclone pyrolyzer.展开更多
Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In th...Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In this study,the Computational Particle Fluid Dynamics(CPFD)model is used to analyze the transfer behavior of binary particles,and finds that the swirl and reaction have a synergistic effect.This effect can increase the heating rate of the particles to the range of flash pyrolysis,and its mechanism lies in the flow field structure of the pyrolyzer.Due to the centrifugal force field,the particles gather to the near wall.The rapid swirl,which facilitates intense gas-solid heat transfer,leads to the rapid heating and pyrolysis of biomass particles.As the pyrolysis proceeds,the mass of the biomass particles becomes smaller and they are more easily affected by the gas flow in pyrolyzer.Under the action of gas flow,char particles serve as new heat carrier to form the inner cycle of particles,which strengthens the heating process.The pyrolysis products are discharged from the exhaust port in time with the flow field of the pyrolyzer to achieve separation from the heat carrier and inhibit the occurrence of secondary reactions.展开更多
The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-...This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.展开更多
Pyrolysis technology has received increasing attention in recent years due to its great potential in the field of lowrank coal clean and efficient conversion.Since pyrolysis reaction is very fast and prone to overreac...Pyrolysis technology has received increasing attention in recent years due to its great potential in the field of lowrank coal clean and efficient conversion.Since pyrolysis reaction is very fast and prone to overreaction,the downer-type reactor is considered as a pyrolyzer due to its unique plug flow reactor characteristics.However,the low solids holdup,which is not beneficial for the fast heat transfer,limits its industrial application.Thus,how to realize high-density operation is crucial to the successful application of the downer reactor.Herein,the definition and strategies of high-density operation in the downer were introduced at first.And then,considering the increasing influence of computational fluid dynamics(CFD)in the fluidization industry,the state-of-the-art progress in downer simulation was reviewed,in which the newly developed drag models for downers were carefully discussed and compared.Also,to help prediction of the pyrolysis behaviors,the widely used pyrolysis kinetic models were systematically summarized.Combined with the potential of the downer in the field of coal pyrolysis,the relevant research progress of hot-state simulation of the downer pyrolyzer were introduced and analyzed.Finally,the suggestions on how to carry out follow-up work were given.It is expected that this review could give a better understanding for designing and optimizing downer pyrolyzer.展开更多
Pyrolysis-Gas Chromatography-Mass Spectrometry(Py-GC/MS)was adopted to determine the changes in component of BG11-cultivated Desmodesmus sp.(BG11/8-10)pyrolyzed products at different temperatures(300℃-800℃).The resu...Pyrolysis-Gas Chromatography-Mass Spectrometry(Py-GC/MS)was adopted to determine the changes in component of BG11-cultivated Desmodesmus sp.(BG11/8-10)pyrolyzed products at different temperatures(300℃-800℃).The results of analysis on a series of total ions chromatogram(TIC)showed that pyrolyzed products of BG11/8-10 at different temperature mainly included aliphatic hydrocarbons,nitrogen compounds,aromatic hydrocarbons,fatty acids,ketones,alcohols,aldehydes and furan compounds.Compared to the bio-oil(42.36%)generated by pyrolysis at 700℃,the relative content of bio-oil generated at 800℃was the highest up to 56.96%.However,higher temperature could easily cause the generation of large quantities of such pollutants as nitrogen compounds and polycyclic aromatic hydrocarbons(PAHs).Therefore,based on lower pollutant discharge and higher bio-oil yield,the optimal pyrolysis temperature of BG11/8-10 was around 700℃.展开更多
Carbon films prepared from pyrolyzation of spin-casted polyacrylonitrile (PAN) thin films display high electrical conductivity (〉600 S/cm, at 1000 ℃ carbonization), low sheet resistance (about 100 Y2/square at ...Carbon films prepared from pyrolyzation of spin-casted polyacrylonitrile (PAN) thin films display high electrical conductivity (〉600 S/cm, at 1000 ℃ carbonization), low sheet resistance (about 100 Y2/square at the PAN film thickness of 70 nm) and partial transmittance. These pyrolyzed PAN (PPAN) films were patterned as bottom electrodes by photolithography, and utilized as drain and source electrodes to fabricate organic field-effect transistor (OFET) devices with a p-type semiconductor (P3HT) and an n-type semiconductor (DPP-containing quinoidal small molecule) through a spin-coating procedure. The results showed that the devices with the PAN electrodes exhibited almost the same excellent performance without any further modification compared to those devices with traditional Au electrodes. Since these PPAN films had the advantages of low-cost, high performance, easier for large-area fabrication, thermal and chemical stability, it should be a promising electrode material for organic electrodes.展开更多
The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous c...The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.展开更多
To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,rat...To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,ratios(denoted by hf/b)of the height of the rectangular burner nozzle to its width of 1.65,2.32,and 3.22.The combustion tests indicate that the flame stability,ignition performance,and fuel burnout ratio were significantly improved at a nozzle setting of hf/b=2.32.The smaller hf/b delayed ignition and caused the flame to concentrate excessively on the axis of the furnace,while the larger hf/b easily caused the deflection of the pulverized coal flame,and a high-temperature flame zone emerged close to the furnace wall.NOx emissions at the outlet of the primary zone decreased from 447 to 354 mg/m3(O2=6%),and the ignition distance decreased from 420 to 246 mm when the hf/b varied from 1.65 to 3.22.Furthermore,the ratio(denoted by SR/SC)of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone.The SR/SC rose monotonously,but its restraining effects on NOx formation decreased as hf/b increased.The results suggested that in a test furnace,regulating the nozzle hf/b conditions sharply reduces NOx emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.展开更多
With the self-made pyrolysis equipment in miniature, we experimented in different pyrolysis conditions to get different pyrolyzate yields ( carbon, vinegar and gas). It proved that with the rise of temperature, the av...With the self-made pyrolysis equipment in miniature, we experimented in different pyrolysis conditions to get different pyrolyzate yields ( carbon, vinegar and gas). It proved that with the rise of temperature, the average yield of carbon descends gradually while the yields of vinegar and gas rise gradually. As the temperature rises, the yield of gas increases much more than that of vinegar. When speeding up the rising temperature, yield of carbon goes down while yields of vinegar and gas go up.展开更多
文摘A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211164)supported by the National Natural Science Foundation of China(No.22108262),ShanxiProvinceScienceFoundationforYouthsS(No.20210302124600)+1 种基金Shanxi Province Foundation for Returness(No.2022-138)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(No.20220014).
文摘Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup and violent turbulence,and correspondingly faster heat transfer.In this work,the heat transfer behavior in the cyclone pyrolyzer is specifically studied using the computational fluid dynamics-discrete element method.The simulation results reveal that the gas-solids heat convection contributes mainly to the heat transfer process,and the heat radiation and conduction are relatively small and almost negligible,respectively.Compared with the downer pyrolyzer under the same operating conditions,the heating rate is significantly increased in the cyclone pyrolyzer.By analyzing the flow characteristics in the cyclone pyrolyzer,it is found that the region of high convective heat transfer rate coincides with that of natural cyclone length.Additionally,the final coal temperature increases with the increase of gas velocity and exists a maximum value.These results can offer some qualitative understanding of the heat transfer behavior in the cyclone pyrolyzer.
基金supported by CIRP Open Fund of Radiation Protection Laboratories(grant No.CIRP-RGC-2022-02)Fundamental Research Program of Shanxi Province(grant No.202203021211164)+3 种基金General Program of National Natural Science Foundation of China(grant No.22378285)the National Natural Science Foundation of China(grant No.22108262)Fundamental Research Program of Shanxi Province(grant No.20210302124600)Shanxi Province Foundation for Returness(grant No.2022-138)and Fund Program。
文摘Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In this study,the Computational Particle Fluid Dynamics(CPFD)model is used to analyze the transfer behavior of binary particles,and finds that the swirl and reaction have a synergistic effect.This effect can increase the heating rate of the particles to the range of flash pyrolysis,and its mechanism lies in the flow field structure of the pyrolyzer.Due to the centrifugal force field,the particles gather to the near wall.The rapid swirl,which facilitates intense gas-solid heat transfer,leads to the rapid heating and pyrolysis of biomass particles.As the pyrolysis proceeds,the mass of the biomass particles becomes smaller and they are more easily affected by the gas flow in pyrolyzer.Under the action of gas flow,char particles serve as new heat carrier to form the inner cycle of particles,which strengthens the heating process.The pyrolysis products are discharged from the exhaust port in time with the flow field of the pyrolyzer to achieve separation from the heat carrier and inhibit the occurrence of secondary reactions.
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.
基金supported by Chinese Postdoctoral Science Foundation (2021M692696)the National Science and Technology Project (2016ZX05058-003-017)Sichuan Science and Technology Program (2021YFH0081)。
文摘This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.
基金the National Natural Science Foundation of China(No.U1710101,22108262,21908135)Shanxi Province Science Foundation for Youths(20210302124600,201901D211435)Shanxi Province Foundation for Returness(2019-20),China.
文摘Pyrolysis technology has received increasing attention in recent years due to its great potential in the field of lowrank coal clean and efficient conversion.Since pyrolysis reaction is very fast and prone to overreaction,the downer-type reactor is considered as a pyrolyzer due to its unique plug flow reactor characteristics.However,the low solids holdup,which is not beneficial for the fast heat transfer,limits its industrial application.Thus,how to realize high-density operation is crucial to the successful application of the downer reactor.Herein,the definition and strategies of high-density operation in the downer were introduced at first.And then,considering the increasing influence of computational fluid dynamics(CFD)in the fluidization industry,the state-of-the-art progress in downer simulation was reviewed,in which the newly developed drag models for downers were carefully discussed and compared.Also,to help prediction of the pyrolysis behaviors,the widely used pyrolysis kinetic models were systematically summarized.Combined with the potential of the downer in the field of coal pyrolysis,the relevant research progress of hot-state simulation of the downer pyrolyzer were introduced and analyzed.Finally,the suggestions on how to carry out follow-up work were given.It is expected that this review could give a better understanding for designing and optimizing downer pyrolyzer.
基金Beijing Municipal Science and Technology Plan Projects(No.D161100006016001)。
文摘Pyrolysis-Gas Chromatography-Mass Spectrometry(Py-GC/MS)was adopted to determine the changes in component of BG11-cultivated Desmodesmus sp.(BG11/8-10)pyrolyzed products at different temperatures(300℃-800℃).The results of analysis on a series of total ions chromatogram(TIC)showed that pyrolyzed products of BG11/8-10 at different temperature mainly included aliphatic hydrocarbons,nitrogen compounds,aromatic hydrocarbons,fatty acids,ketones,alcohols,aldehydes and furan compounds.Compared to the bio-oil(42.36%)generated by pyrolysis at 700℃,the relative content of bio-oil generated at 800℃was the highest up to 56.96%.However,higher temperature could easily cause the generation of large quantities of such pollutants as nitrogen compounds and polycyclic aromatic hydrocarbons(PAHs).Therefore,based on lower pollutant discharge and higher bio-oil yield,the optimal pyrolysis temperature of BG11/8-10 was around 700℃.
基金supported by the Chinese Ministryof Science and Technology (2013CB632506, 2011CB932304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12000000)the National Natural Science Foundation of China(21290191, 21333011)
文摘Carbon films prepared from pyrolyzation of spin-casted polyacrylonitrile (PAN) thin films display high electrical conductivity (〉600 S/cm, at 1000 ℃ carbonization), low sheet resistance (about 100 Y2/square at the PAN film thickness of 70 nm) and partial transmittance. These pyrolyzed PAN (PPAN) films were patterned as bottom electrodes by photolithography, and utilized as drain and source electrodes to fabricate organic field-effect transistor (OFET) devices with a p-type semiconductor (P3HT) and an n-type semiconductor (DPP-containing quinoidal small molecule) through a spin-coating procedure. The results showed that the devices with the PAN electrodes exhibited almost the same excellent performance without any further modification compared to those devices with traditional Au electrodes. Since these PPAN films had the advantages of low-cost, high performance, easier for large-area fabrication, thermal and chemical stability, it should be a promising electrode material for organic electrodes.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0602002).
文摘The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0602002)National Natural Science Foundation of China(Grant No.51536002).
文摘To improve the ignition behavior and to reduce the high NOx emissions of blended pulverized fuels(PF)of semicoke(SC),large-scale experiments were conducted in a 300 kW fired furnace at various nozzle settings,i.e.,ratios(denoted by hf/b)of the height of the rectangular burner nozzle to its width of 1.65,2.32,and 3.22.The combustion tests indicate that the flame stability,ignition performance,and fuel burnout ratio were significantly improved at a nozzle setting of hf/b=2.32.The smaller hf/b delayed ignition and caused the flame to concentrate excessively on the axis of the furnace,while the larger hf/b easily caused the deflection of the pulverized coal flame,and a high-temperature flame zone emerged close to the furnace wall.NOx emissions at the outlet of the primary zone decreased from 447 to 354 mg/m3(O2=6%),and the ignition distance decreased from 420 to 246 mm when the hf/b varied from 1.65 to 3.22.Furthermore,the ratio(denoted by SR/SC)of the strong reduction zone area to the combustion reaction zone area was defined experimentally by the CO concentration to evaluate the reduction zone.The SR/SC rose monotonously,but its restraining effects on NOx formation decreased as hf/b increased.The results suggested that in a test furnace,regulating the nozzle hf/b conditions sharply reduces NOx emissions and improves the combustion efficiency of SC blends possessing an appropriate jet rigidity.
文摘With the self-made pyrolysis equipment in miniature, we experimented in different pyrolysis conditions to get different pyrolyzate yields ( carbon, vinegar and gas). It proved that with the rise of temperature, the average yield of carbon descends gradually while the yields of vinegar and gas rise gradually. As the temperature rises, the yield of gas increases much more than that of vinegar. When speeding up the rising temperature, yield of carbon goes down while yields of vinegar and gas go up.