期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress 被引量:6
1
作者 TIAN Qing-song WANG Shu-yan +3 位作者 DU Jian-cai WU Zhi-juan LI Xiao-quan HAN Bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第9期2097-2104,共8页
Reference genes, stably expressing in different tissues and cells, are commonly used as the references in expression analysis. Selecting the optimum reference gene is crucial to the success of experiments. In this stu... Reference genes, stably expressing in different tissues and cells, are commonly used as the references in expression analysis. Selecting the optimum reference gene is crucial to the success of experiments. In this study, the expression stabilities of nine common reference genes, including ACT2, 18 S r RNA, APRT, EF-1α, RNA POL II, TUBα, TUBβ, GAPDH and TLF of Agropyron mongolicum, were studied under drought condition. Among them, 18 S r RNA was found to be the most optimum reference gene under drought stress by the analyzing of ge Norm and Norm Finder software. Quantitative expression levels of P5 CS using 18 S r RNA as the reference gene, and proline contents under drought stress in A. mongolicum were further operated, and we found the expression level of P5 CS gene and proline content had a significantly positive relationship(R^2=0.7763, P〈0.05). This study established and validated 18 S r RNA as the reference genes in A. mongolicum under drought stress, providing a powerful tool for the quantitative expression analysis of drought genes in A. mongolicum. 展开更多
关键词 reference genes quantitative real-time pCR drought stress proline pyrroline-5-carboxylic acid synthetase Agropyron mongolicum
下载PDF
Drought-induced responses of organic osmolytes and proline metabolism during pre-flowering stage in leaves of peanut (Arachis hypogaea L.) 被引量:4
2
作者 ZHANG Ming WANG Li-feng +2 位作者 ZHANG Kun LIU Feng-zhen WAN Yong-shan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2197-2205,共9页
Peanut (Arachis hypogaea L.), an improtant oil crop, usually encounters drought stress in the process of growth and development, especially at pre-flowering stage. In order to gain insight into the drought tolerance... Peanut (Arachis hypogaea L.), an improtant oil crop, usually encounters drought stress in the process of growth and development, especially at pre-flowering stage. In order to gain insight into the drought tolerance potentials based on osmolyte accumulation and metabolism of proline aspects of peanut, pot experiments were conducted with a split-plot design in Tai'an, Shangdong Province, China in 2013 and 2014. Pre-flowering drought (PFD) stress and optinum irrigation (control, CK) were served as the main plots and the two peanut cultivars Shanhua 11 and Hua 17 served as sub-plots. Shanhua 11 was drought-tolerant cultivar and Hua 17 was drought-sensitive. The content of soluble sugars, soluble protein, free proline and other free amino acids, the activities of enzymes involved in proline metabolism, and malondialdehyde (MDA) content and ion leakage were all investigated in the two cultivars at pre-flowering stage. Results showed that PFD stress significantly increased the levels of soluble protein, free proline and free amino acid, and increased Al-pyrroline-5-car- boxylate synthetase (P-5-CS, EC 2.7.2.11) activity in the leaves of drought-tolerant and drought-sensitive cultivars. The activity of proline dehydrogenase (proDH) (EC 1.5.99.8) decreased under PFD stress in both cultivars. The leaves of the tolerant cultivar maintained higher increments of osmolyte levels, lower increments of MDA content and ion leakage, as well as a higher increased proportion of P-5-CS activity and higher inhibited proportion of proDH activity under water stress compared with the drought-sensitive cultivar. The study suggests that proline accumulation in peanut leaves under PFD can be explained by the higher enhanced activities of P-5-CS and higher inhibition of proDH. The results will provide useful information for genetic improvement of peanut under drought tolerance. 展开更多
关键词 drought stress peanut (Arachis hypogaea L.) △1-pyrroline-5-carboxylate synthetase (p-5-cs) 5-ornithinetransaminase (OAT) proline dehydrogenase (proDH)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部