In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate a...In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate and momentum operators, respectively. Some operator identities are derived concisely. As for its applications, the single (two-) mode squeezed operators and Fresnel operator are examined. It is shown that the classical correspondence of Fresnel operator’s Q-P (P-Q) ordering is just the integration kernel of Fresnel transformation. In addition, a new photo-counting formula is constructed by the Q-P ordering of operators.展开更多
Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed ...Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed t. The above model is usually written as AR(p)-ARCH(q).We consider stationary series AR(p)-ARCH(q) model and assume the stationary field is θ0. We express this statement asH1:α1≥α2…≥αq,β1≥β2≥…≥βp and we consider an order restricted testing problem, which is to testH0:α1=α2=…=αq,β1=β2=…=βpagainst H1-H0. We derive the likelihood ratio (LR) test statistic and its asymptotic distri-展开更多
In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction...In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction. A similar method is also proposed for the case that the parameters are restricted by a simple order: α1≥α2≥…≥αq and β1≥β2≥…≥βp. The strong consistency of the above two estimators is discussed. Furthermore, we consider the problem of testing homogeneity of parameters against the simple order restriction. We give the likelihood ratio (LR) test statistic for the testing problem and derive its asymptotic null distribution.展开更多
The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique...The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique where the Liouville space is briefly expanded with an additional (virtual) space only within ultrashort subintervals. This tremendously reduces the cost of time-consuming calculations. We implement our technique for an example of a charged particle in both harmonic and anharmonic potentials. The temporal evolutions of the probability for the particle being in the ground state are obtained numerically and compared to the analytical solutions. We further discuss the physics insight of this technique based on a thought-experiment. Successive processes intrinsically “hitchhiking” via virtual space in discrete ultrashort time duration, are the hallmark of our technique. We believe that this technique has potential for solving numerous problems which often pose a challenge when using the traditional approach based on time-ordered exponentials.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11264018)the Natural Science Foundation of Jiangxi Province of China(Grant No.20132BAB212006)the Fund from the Key Laboratory of Optoelectronics and Telecommunication of Jiangxi Province,China
文摘In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate and momentum operators, respectively. Some operator identities are derived concisely. As for its applications, the single (two-) mode squeezed operators and Fresnel operator are examined. It is shown that the classical correspondence of Fresnel operator’s Q-P (P-Q) ordering is just the integration kernel of Fresnel transformation. In addition, a new photo-counting formula is constructed by the Q-P ordering of operators.
文摘Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed t. The above model is usually written as AR(p)-ARCH(q).We consider stationary series AR(p)-ARCH(q) model and assume the stationary field is θ0. We express this statement asH1:α1≥α2…≥αq,β1≥β2≥…≥βp and we consider an order restricted testing problem, which is to testH0:α1=α2=…=αq,β1=β2=…=βpagainst H1-H0. We derive the likelihood ratio (LR) test statistic and its asymptotic distri-
文摘In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction. A similar method is also proposed for the case that the parameters are restricted by a simple order: α1≥α2≥…≥αq and β1≥β2≥…≥βp. The strong consistency of the above two estimators is discussed. Furthermore, we consider the problem of testing homogeneity of parameters against the simple order restriction. We give the likelihood ratio (LR) test statistic for the testing problem and derive its asymptotic null distribution.
文摘The traditional simulations may occasionally turn out to be challenging for the quantum dynamics, particularly those governed by the nonlinear Hamiltonians. In this work, we introduce a nonstandard iterative technique where the Liouville space is briefly expanded with an additional (virtual) space only within ultrashort subintervals. This tremendously reduces the cost of time-consuming calculations. We implement our technique for an example of a charged particle in both harmonic and anharmonic potentials. The temporal evolutions of the probability for the particle being in the ground state are obtained numerically and compared to the analytical solutions. We further discuss the physics insight of this technique based on a thought-experiment. Successive processes intrinsically “hitchhiking” via virtual space in discrete ultrashort time duration, are the hallmark of our technique. We believe that this technique has potential for solving numerous problems which often pose a challenge when using the traditional approach based on time-ordered exponentials.