期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Donaldson's Q-operators for symplectic manifolds
1
作者 LU Wen MA Xiaonan MARINESCU George 《Science China Mathematics》 SCIE CSCD 2017年第6期1047-1056,共10页
We prove an estimate for Donaldson's Q-operator on a prequantized compact symplectic manifold.This estimate is an ingredient in the recent result of Keller and Lejmi(2017) about a symplectic generalization of Dona... We prove an estimate for Donaldson's Q-operator on a prequantized compact symplectic manifold.This estimate is an ingredient in the recent result of Keller and Lejmi(2017) about a symplectic generalization of Donaldson's lower bound for the L^2-norm of the Hermitian scalar curvature. 展开更多
关键词 q-operator QUANTIZATION symplectic manifold
原文传递
A q-operational equation and the Rogers-Szegő polynomials
2
作者 Zhiguo Liu 《Science China Mathematics》 SCIE CSCD 2023年第6期1199-1216,共18页
By solving a q-operational equation with formal power series,we prove a new q-exponential operational identity.This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to d... By solving a q-operational equation with formal power series,we prove a new q-exponential operational identity.This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to develop a systematic method to prove the identities involving the Rogers-Szegő polynomials.With this operational identity,we can easily derive,among others,the q-Mehler formula,the q-Burchnall formula,the q-Nielsen formula,the q-Doetsch formula,the q-Weisner formula,and the Carlitz formula for the Rogers-Szegő polynomials.This operational identity also provides a new viewpoint on some other basic q-formulas.It allows us to give new proofs of the q-Gauss summation and the second and third transformation formulas of Heine and give an extension of the q-Gauss summation. 展开更多
关键词 Q-SERIES Q-DERIVATIVE q-operational equation q-exponential operator Rogers-Szegőpolynomial
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部