This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadr...This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.展开更多
In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitut...In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitute an interval, with a method called the sign-variation analysis. The results are compared with the parametrization technique offered by Elishakoff and Miglis, and with the solution yielded by minimization and maximization commands of the Maple software. Solutions for some interval word problems are also provided to edulcorate the methodology. This article only focuses on the real roots of those quadratic equations, complex solutions being beyond this investigation.展开更多
Spatially homogeneous and anisotropic Bianchi type-I cosmological model containing perfect fluid with quadratic equation of state has been diagnosed in general theory of relativity. To obtain a deterministic solution,...Spatially homogeneous and anisotropic Bianchi type-I cosmological model containing perfect fluid with quadratic equation of state has been diagnosed in general theory of relativity. To obtain a deterministic solution, we have used a relation between metric potentials. The exact solution of Einstein’s field equations thus obtained represents an expanding and decelerating universe. The physical and kinematical parameters of the model have also been analyzed with certain constrained between the parameters of the quadratic equation of state.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
A necessary and sufficient solvable condition for diagonal quadratic equation with prime variables in arithmetic progressions is given, and the best qualitative bound for small solutions of the equation is obtained,
In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hye...In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.展开更多
Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation str...Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.展开更多
In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong form...In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.展开更多
We solve the quadratic matrix equation AXA = XAX with a given nilpotent matrix A, to find all commuting solutions. We first provide a key lemma, and consider the special case that A has only one Jordan block to motiva...We solve the quadratic matrix equation AXA = XAX with a given nilpotent matrix A, to find all commuting solutions. We first provide a key lemma, and consider the special case that A has only one Jordan block to motivate the idea for the general case. Our main result gives the structure of all the commuting solutions of the equation with an arbitrary nilpotent matrix.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
We consider the Hyers-Ulam stability problem of the generalized quadratic functional equationuoA+voB-2woP1 - 2ko P2 =0, which is a distributional version of the classical generalized quadratic functional equation f(...We consider the Hyers-Ulam stability problem of the generalized quadratic functional equationuoA+voB-2woP1 - 2ko P2 =0, which is a distributional version of the classical generalized quadratic functional equation f(x+y)+g(x - y) - 2h(x) - 2k(y)=0展开更多
A numerical solution of the quadratic matrix equations associated with a nonsingular M-matrix by using the alternately linearized implicit iteration method is considered. An iteration method for computing a nonsingula...A numerical solution of the quadratic matrix equations associated with a nonsingular M-matrix by using the alternately linearized implicit iteration method is considered. An iteration method for computing a nonsingular M-matrix solution of the quadratic matrix equations is developed, and its corresponding theory is given. Some numerical examples are provided to show the efficiency of the new method.展开更多
Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (...Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (x, y).展开更多
In this paper,the author constructs ghost symmetries of the extended Toda hierarchy with their spectral representations.After this,two kinds of Darboux transforma-tions in different directions and their mixed Darboux ...In this paper,the author constructs ghost symmetries of the extended Toda hierarchy with their spectral representations.After this,two kinds of Darboux transforma-tions in different directions and their mixed Darboux transformations of this hierarchy are constructed.These symmetries and Darboux transformations might be useful in Gromov-Witten theory of CP1.展开更多
文摘This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.
文摘In this article, analytical results are obtained apparently for the first time in the literature, for the lower and upper bounds of the roots of quadratic equations when two or all three coefficients a, b, c constitute an interval, with a method called the sign-variation analysis. The results are compared with the parametrization technique offered by Elishakoff and Miglis, and with the solution yielded by minimization and maximization commands of the Maple software. Solutions for some interval word problems are also provided to edulcorate the methodology. This article only focuses on the real roots of those quadratic equations, complex solutions being beyond this investigation.
文摘Spatially homogeneous and anisotropic Bianchi type-I cosmological model containing perfect fluid with quadratic equation of state has been diagnosed in general theory of relativity. To obtain a deterministic solution, we have used a relation between metric potentials. The exact solution of Einstein’s field equations thus obtained represents an expanding and decelerating universe. The physical and kinematical parameters of the model have also been analyzed with certain constrained between the parameters of the quadratic equation of state.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金supported partially by the National Natural Science Foundation of China (Grant No.10671056)
文摘A necessary and sufficient solvable condition for diagonal quadratic equation with prime variables in arithmetic progressions is given, and the best qualitative bound for small solutions of the equation is obtained,
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2012R1A1A2004299)
文摘In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.
基金Supported by the National Basic Research Program of China(2013CB733600)
文摘Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.
基金supported in part by National Science Foundation via grant DMS-2012286by Department of Energy via grant DE-SC0019449.
文摘In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.
文摘We solve the quadratic matrix equation AXA = XAX with a given nilpotent matrix A, to find all commuting solutions. We first provide a key lemma, and consider the special case that A has only one Jordan block to motivate the idea for the general case. Our main result gives the structure of all the commuting solutions of the equation with an arbitrary nilpotent matrix.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.
基金Supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (Grant No. KRF-2007-521-C00016)
文摘We consider the Hyers-Ulam stability problem of the generalized quadratic functional equationuoA+voB-2woP1 - 2ko P2 =0, which is a distributional version of the classical generalized quadratic functional equation f(x+y)+g(x - y) - 2h(x) - 2k(y)=0
基金This work was supported by the National Natural Science Foundation (No.11171337), P. R. China.
文摘A numerical solution of the quadratic matrix equations associated with a nonsingular M-matrix by using the alternately linearized implicit iteration method is considered. An iteration method for computing a nonsingular M-matrix solution of the quadratic matrix equations is developed, and its corresponding theory is given. Some numerical examples are provided to show the efficiency of the new method.
基金the National Natural Science Foundation of China(No.10971184)
文摘Let l be a given nonzero integer. The authors give an explicit characterization of the positive integer k that makes the Diophantine equation x2 - kxy + y2 + 1x = 0 have infinitely many positive integer solutions (x, y).
基金supported by the National Natural Science Foundation of China(No.11571192)K.C.Wong Magna Fund in Ningbo University.
文摘In this paper,the author constructs ghost symmetries of the extended Toda hierarchy with their spectral representations.After this,two kinds of Darboux transforma-tions in different directions and their mixed Darboux transformations of this hierarchy are constructed.These symmetries and Darboux transformations might be useful in Gromov-Witten theory of CP1.