期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Numerical Algorithm Based on Quadratic Finite Element for Two-Dimensional Nonlinear Time Fractional Thermal Diffusion Model 被引量:3
1
作者 Yanlong Zhang Baoli Yin +2 位作者 Yue Cao Yang Liu Hong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1081-1098,共18页
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d... In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results. 展开更多
关键词 quadratic finite element two-dimensional nonlinear time fractional thermal diffusion model L2-1formula.
下载PDF
Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem
2
作者 Yanlong Zhang Yanhui Zhou Jiming Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期487-514,共28页
In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defin... In this article,we study a 2D nonlinear time-fractional Rayleigh-Stokes problem,which has an anomalous subdiffusion term,on triangular meshes by quadratic finite volume element schemes.Time-fractional derivative,defined by Caputo fractional derivative,is discretized through L2−1σformula,and a two step scheme is used to approximate the time first-order derivative at time tn−α/2,where the nonlinear term is approximated by using a matching linearized difference scheme.A family of quadratic finite volume element schemes with two parameters are proposed for the spatial discretization,where the range of values for two parameters areβ1∈(0,1/2),β2∈(0,2/3).For testing the precision of numerical algorithms,we calculate some numerical examples which have known exact solution or unknown exact solution by several kinds of quadratic finite volume element schemes,and contrast with the results of an existing quadratic finite element scheme by drawing diversified comparison plots and showing the detailed data of L2 error results and convergence orders.Numerical results indicate that,L2 error estimate of one scheme with parameters β_(1)=(3−√3)/6,β2=(6+√3−√21+6√3)/9 is O(h^(3)+△t^(2)),and L^(2) error estimates of other schemes are O(h^(2)+△t^(2)),where h and △t denote the spatial and temporal discretization parameters,respectively. 展开更多
关键词 quadratic finite volume element schemes anomalous sub-diffusion term L2 error estimate quadratic finite element scheme
下载PDF
A Quadratic Serendipity Finite Volume Element Method on Arbitrary Convex Polygonal Meshes
3
作者 Yanlong Zhang 《Communications in Computational Physics》 SCIE 2023年第6期116-131,共16页
Based on the idea of serendipity element,we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polygonalmeshes in this article.The explicit construction of quadrati... Based on the idea of serendipity element,we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polygonalmeshes in this article.The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates,and the quadratic serendipity element function space based on Wachspress coordinate is selected as the trial function space.Moreover,we construct a family of unified dual partitions for arbitrary convex polygonal meshes,which is crucial to finite volume element scheme,and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom.Finally,under certain geometric assumption conditions,the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained,and verified by numerical experiments. 展开更多
关键词 quadratic serendipity polygonal finite volume element method arbitrary convex polygonal meshes Wachspress coordinate unified dual partitions optimal H1 error estimate
原文传递
A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS
4
作者 Xinjiang Chen Yanqiu Wang 《Journal of Computational Mathematics》 SCIE CSCD 2022年第4期624-648,共25页
In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,tw... In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,two stable discretizations for the Stokes equations are developed,which can be viewed as the extensions of the P2-P0 and the Q2-(discontinuous)P1 elements,respectively,to polygonal meshes.Numerical results are presented,which support our theoretical claims. 展开更多
关键词 quadratic finite element method Stokes equations Generalized barycentric coordinates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部