The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is present...The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.展开更多
Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. ...Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver co...To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.展开更多
In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential ...In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.展开更多
文摘The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.
文摘Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金Supported by Natural Science and Technology Research Project of the Jiangxi Education Department(GJJ202002, GJJ2202620)。
文摘To solve the constraints of multi-objective optimization of the driver system and high nonlinear problems, according to the relevant dimensions of a car, we build a simulation model with Hybrid Ⅲ 50th dummy driver constraint system. The comparison of the driver mechanics index of the experimental data with the simulation data in the frontal crash shows that the accuracy of simulation model meets the requirements. The optimal Latin test design is adopted, and the global sensitivity analysis of the design parameters is carried out based on the Kriging model. The four most sensitive parameters are selected, and the parameters are solved by a multi-island genetic algorithm.And then the nonlinear programming quadratic line(NLPQL) algorithm is used to search for accurate optimization. The optimal parameters of the occupant restraint system are determined: the limiting force value of force limiter 2 985.603 N, belt extension 12.684%, airbag point explosion time 27.585 ms, and airbag vent diameter 27.338 mm, with the weighted injury criterion(WIC) decreased by 12.97%, the head injury decreased by 22.60%, and the chest compression decreased by 7.29%. The results show that the system integration of passive safety devices such as seat belts and airbags can effectively protect the driver.
基金Supported partially by Chinese NNSF grants 19731010the knowledge innovation program of CAS.
文摘In a composite-step approach, a step Sk is computed as the sum of two components Uk and hk. The normal component Vk, which is called the vertical step, aims to improve the linearized feasibility, while the tangential component hk, which is also called horizontal step, concentrates on reducing a model of the merit functions. As a filter method, it reduces both the infeasibility and the objective function. This is the same property of these two methods. In this paper, one concerns the composite-step like filter approach. That is, a step is tangential component hk if the infeasibility is reduced. Or else, Sk is a composite step composed of normal component Uk, and tangential component hk.