The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a sw...The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.展开更多
基金supported by the National Natural Science Foundation of China(61573230,61473034,51777012)Beijing Nova Programme Interdisciplinary Cooperation Project(Z161100004916041)
文摘The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.