A new quadrature sampling technique for arbitrary bandpass signal within baseband sampling rate is presented. The input bandpass signal whose carrier frequency lies in the A/D baseband sampling rate is first decimated...A new quadrature sampling technique for arbitrary bandpass signal within baseband sampling rate is presented. The input bandpass signal whose carrier frequency lies in the A/D baseband sampling rate is first decimated by factor 2 and modulated by (- 1)n, and then is interpolated by a linear phase FIR all-pass filter, finally the modulated complex envelope of bandpass signal can be produced.展开更多
Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is o...Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.展开更多
UM2000 signal is a type of multi-audio frequency-modulated signal which is widely used for railway blocking. Principles of three typical demodulating algorithms are presented in details in this paper. Bit error rates ...UM2000 signal is a type of multi-audio frequency-modulated signal which is widely used for railway blocking. Principles of three typical demodulating algorithms are presented in details in this paper. Bit error rates of the three methods at different SNRs are achieved by Monte Carlo simulation experiments. Among the three algorithms, the quadrature demodulation has the best performance at the real working environment. However, the three methods have the same problem of phase hopping when noise is too strong.展开更多
The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse s...The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.展开更多
针对光信噪比(OSNR)估计复杂度高、计算量大的问题,提出了一种基于轻量化随机森林(RF)算法的高阶正交幅度调制(QAM)信号OSNR估计方法。该方法通过将不同OSNR的高阶QAM信号映射为不同的星座图数据集,并利用这些数据集来训练RF模型,从而实...针对光信噪比(OSNR)估计复杂度高、计算量大的问题,提出了一种基于轻量化随机森林(RF)算法的高阶正交幅度调制(QAM)信号OSNR估计方法。该方法通过将不同OSNR的高阶QAM信号映射为不同的星座图数据集,并利用这些数据集来训练RF模型,从而实现OSNR的快速估计。仿真结果表明:采用基于轻量化RF算法估计64QAM和128QAM信号的OSNR,在系统OSNR真实值为5~30 d B时,2种调制格式的OSNR估计准确率均接近100%;64QAM信号OSNR估计值的平均绝对误差(MAE)为0.08 d B,128QAM的MAE为0.12 d B,比基于长短期记忆(LSTM)算法的信号OSNR估计结果更准确。展开更多
We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multipl...We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).展开更多
提出了一种无数模转换器(Digital to Analog Converter,DAC)的全数字跳频(Frequency Hopping,FH)系统。通过Δ∑调制(delta-sigma modulation,DSM),数字域中的FH模拟信号可以被转换为比特序列,然后通过I/O端口传输。与传统的模拟载波跳...提出了一种无数模转换器(Digital to Analog Converter,DAC)的全数字跳频(Frequency Hopping,FH)系统。通过Δ∑调制(delta-sigma modulation,DSM),数字域中的FH模拟信号可以被转换为比特序列,然后通过I/O端口传输。与传统的模拟载波跳频系统相比,该系统具有较低的复杂度和较高的频率选择灵活性。与现有的数字基带跳频系统相比,全数字FH系统更容易在数字信号处理(Digital Signal Processing,DSP)中实现DSM,而不是利用高采样率DAC。实验通过正交幅度调制(Quadrature Amplitude Modulation,QAM),在20 km光纤和1 m无线链路上成功实现了2.4 GHz、3.5 GHz、3.51 GHz和5.5 GHz的跳频信号的发送和接收。展开更多
文摘A new quadrature sampling technique for arbitrary bandpass signal within baseband sampling rate is presented. The input bandpass signal whose carrier frequency lies in the A/D baseband sampling rate is first decimated by factor 2 and modulated by (- 1)n, and then is interpolated by a linear phase FIR all-pass filter, finally the modulated complex envelope of bandpass signal can be produced.
基金Project(2012CB316100)supported by the National Basic Research Program of ChinaProjects(K50511010005,K50511010015)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(B08038)supported by the"111"Program of China
文摘Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.
文摘UM2000 signal is a type of multi-audio frequency-modulated signal which is widely used for railway blocking. Principles of three typical demodulating algorithms are presented in details in this paper. Bit error rates of the three methods at different SNRs are achieved by Monte Carlo simulation experiments. Among the three algorithms, the quadrature demodulation has the best performance at the real working environment. However, the three methods have the same problem of phase hopping when noise is too strong.
基金Supported by the National Natural Science Foundation of China(61271258)
文摘The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.
文摘针对光信噪比(OSNR)估计复杂度高、计算量大的问题,提出了一种基于轻量化随机森林(RF)算法的高阶正交幅度调制(QAM)信号OSNR估计方法。该方法通过将不同OSNR的高阶QAM信号映射为不同的星座图数据集,并利用这些数据集来训练RF模型,从而实现OSNR的快速估计。仿真结果表明:采用基于轻量化RF算法估计64QAM和128QAM信号的OSNR,在系统OSNR真实值为5~30 d B时,2种调制格式的OSNR估计准确率均接近100%;64QAM信号OSNR估计值的平均绝对误差(MAE)为0.08 d B,128QAM的MAE为0.12 d B,比基于长短期记忆(LSTM)算法的信号OSNR估计结果更准确。
基金National Program for Support of Top-Notch Young ProfessionalsNational Natural Science Foundation of China(NSFC)(11574001,11274131,61222502)Program for New Century Excellent Talents in University(NCET)(NCET-11-0182)
文摘We comprehensively characterize the transmission performance of m-ary quadrature amplitude modulation(m-QAM) signals through a silicon microring resonator in the experiment. Using orthogonal frequency-division multiplexing based on offset QAM(OFDM/OQAM) which is modulated with m-QAM modulations, we demonstrate low-penalty data transmission of OFDM/OQAM 64-QAM, 128-QAM, 256-QAM, and 512-QAM signals in a silicon microring resonator. The observed optical signal-to-noise ratio(OSNR) penalties are 1.7 dB for 64-QAM,1.7 dB for 128-QAM, and 3.1 dB for 256-QAM at a bit-error rate(BER) of 2 × 10^(-3) and 3.3 dB for 512-QAM at a BER of 2 × 10^(-2). The performance degradation due to the wavelength detuning from the microring resonance is evaluated, showing a wavelength range of ~0.48 nm with BER below 2 × 10^(-3). Moreover, we demonstrate data transmission of 191.2-Gbit/s simultaneous eight wavelength channel OFDM/OQAM 256-QAM signals in a silicon microring resonator, achieving OSNR penalties less than 2 dB at a BER of 2 × 10^(-2).