In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature ...In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.展开更多
文摘In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.