Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived f...[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.展开更多
Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures pre...Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures presents challenges.As the CEPC will work at four beam energies of Z,W,Higgs and ttbar mode,the DAQ magnets will operate at four field gradients spanning from 3.18 to 12.63 T/m.The first short quadrupole magnet prototype with the bore diameter of 76 mm and magnetic length of 1.0 m revealed the problems of large magnetic field harmonics and a magnetic center shift within the beam energy range.Accordingly,a compensation method was proposed in this work to solve the field crosstalk effect.By adjusting the gap height at the middle of the two apertures,the field harmonics and magnetic center shift are significantly reduced.After optimization,the short prototype was modified using a new scheme.The field simulations are validated from the magnetic measurement results.Further,the multipole field meets the requirements of the four beam energies.The detailed magnetic field optimization,field harmonics adjustment,and measurement results are presented herein.展开更多
The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using...The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.展开更多
We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply...We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.展开更多
While typesetting the article,in the Figs.13 and 17 there were several errors introduced.The correct Figs.13 and 17 are copied below:The original article has been corrected.
The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for l...The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.展开更多
An ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS)was established to quickly and accurately determine the content of oleuropein in cosmetics.The samples were extracte...An ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS)was established to quickly and accurately determine the content of oleuropein in cosmetics.The samples were extracted with methanol-aqueous solution,and the mobile phase with methanol-formic acid solution(0.1 mol/L)=40∶60 was separated by Agilent ZORBAX Eclipse Plus C18(2.1 mm×50 mm×1.8μm-Micron)column temperature 30℃,flow rate 0.3 mL/min.The MS end was detected by electrospray negative mode ionization(ESI-)and multiple reaction monitoring(MRM)mode.The results show a good linear relationship in the range of 0.002~5 mg/L,with a correlation coefficient R2 of 0.999,5.Method recovery range from 84.2%~107.6%and the relative standard deviation RSD is 5.8%.The detection time is 5 min,the detection limit is 0.000,6 mg/L,and the limit of quantification is 0.002 mg/L.This method has the advantages of convenient operation,low quantification limit,high precision and good repeatability,and is suitable for measuring the content of oleuropein in many kinds of cosmetics.展开更多
The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.展开更多
Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry...Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.展开更多
The accurate and efficient measurement of small molecule disease markers for clinical diagnosis is of great importance.In this study,a quadrupole-linear ion trap(Q-LIT)tandem mass spectrometer was designed and built i...The accurate and efficient measurement of small molecule disease markers for clinical diagnosis is of great importance.In this study,a quadrupole-linear ion trap(Q-LIT)tandem mass spectrometer was designed and built in our laboratory.Target precursor ions were first selected in the quadrupole,and then injected,trapped,and fragmented simultaneously in the linear ion trap(LIT)to reduce the space charge effect,enrich the target product ions,and promote sensitivity.The targeted analytes were measured with selected reaction monitoring using a positive scan mode with electrospray ionization(ESI).Ions with a mass-to-charge ratio(m/z)ranging from 195 to 2022 were demonstrated.When scanning at 1218amu.s^(-1),unit resolution and an accuracy of higher than m/z 0.28 was obtained for m/z up to 2000.The dimensionless Mathieu parameter(q)value used in this study was 0.40 for collision-induced dissociation(CID),which was activated by resonance excitation.And an overall CID efficiency of 64%was achieved(activation time,50 ms).Guanidinoacetic acid(GAA)and creatine(CRE)were used as model compounds for small molecule clinical biomarkers.The limits of quantification were 1.0 and 0.2 nmol.L^(-1)for GAA and CRE,respectively.A total of 77 actual samples were successfully analyzed by the home-built ESI-Q-LIT tandem mass spectrometry system.The developed method can reduce matrix interference,minimize space charge effects,and avoid the chromatographic separation of complex samples to simplify the pretreatment process.This novel Q-LIT system is expected to be a good candidate for the determination of biomarkers in clinical diagnosis and therapeutics.展开更多
A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-curre...A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-current linac.It consists of an alternating series of crossbar H-type drift tubes and RF quadrupole sections.Owing to its special geometry,cavity fabrication is a major hurdle for its engineering development and application.In this paper,we report the detailed mechanical design of this structure and describe its fabrication process,including machining,assembly,and inspection.The field distribution was measured by the bead-pull technique.The results show that the field errors of both the accelerating and focusing fields are within an acceptable range.A tuning scheme for this new structure is proposed and verified.The cold test process and results are presented in detail.The development of this prototype provides valuable guidance for the application of the spatially periodic RF quadrupole structure.展开更多
The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a co...The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.展开更多
Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physic...Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.展开更多
We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the qu...We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the quadrupolar interaction.We also map out the stability diagram of the condensates and explore the trap geometry dependence of the stability.展开更多
A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is...A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is Kerr-like. Its Taylor expansion form coincides with second order quadrupole metrics with slow rotation already found. Moreover, it can be transformed to an improved Hartle-Thorne metric, which guarantees its validity to be useful in studying compact object, and it is possible to find an inner solution.展开更多
We experimentally produce the rubidium Bose-Einstein condensate in an optically plugged magnetic quadrupole trap. A far blue-detuned focused laser beam with a wavelength of 532nm is plugged in the center of the magnet...We experimentally produce the rubidium Bose-Einstein condensate in an optically plugged magnetic quadrupole trap. A far blue-detuned focused laser beam with a wavelength of 532nm is plugged in the center of the magnetic quadrupole trap to increase the number of trapped atoms and to suppress the heating. An rf evaporative cooling in the magneto-optical hybrid trap is applied to decrease the atom temperature into degeneracy. The atom number of the condensate is 1.2(0.4)× 10^5 and the temperature is below lOOnK. We also study characteristic behaviors of the condensate, such as phase space density, condensate fraction and anisotropic expansion.展开更多
Dependence of decamethylcyclopentasiloxane (DMCPS) organosilicon dissociation on ionized energy in the energy range of 25 eV to 70 eV is investigated by using a quadrupole mass spectrometry. At the ionized energy be...Dependence of decamethylcyclopentasiloxane (DMCPS) organosilicon dissociation on ionized energy in the energy range of 25 eV to 70 eV is investigated by using a quadrupole mass spectrometry. At the ionized energy below 55 eV, the dissociation of DMCPS is dominant. As the ionized energy is above 55 eV, the DMCPS dissociation achieves the maximum cross section, while the fragments from the DMCPS dissociation can further dissociate, which leads to a different ingredient of fragments. At the lower ionized energy of 25 eV, the main fragments are SiOC2H+, SiCH+, Si+, O+ and CH+ ions, which shows an important effect on the SiCOH low-k film deposition.展开更多
Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate...Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate values of the electric quadrupole moments of^2P3/2,^2D3/2,5/2,and^2F5/2,7/2 states which agree well with experimental values.The important role of the electronic correlation to the electric quadrupole moments is investigated.Our calculations indicate the early dispute of the electric quadrupole moment of the Yb^+(2F7/2)state for which the measured and theoretical values have a large discrepancy.These electric quadrupole moment values can help us to determine the electric quadrupole shifts in start-of-the-art experiments of the Yb+ion.展开更多
In this paper we investigate the dynamics of a test particle in the gravitational field with a quadrupole. By constructing Poincare sections for different values of the parameters and initial conditions, we find a cha...In this paper we investigate the dynamics of a test particle in the gravitational field with a quadrupole. By constructing Poincare sections for different values of the parameters and initial conditions, we find a chaotic evolution.From these Poincare sections, we further confirm that the chaotic evolution of the test particle originates from the quadrupole.展开更多
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金Supported by Scientific Research Project of Dalian Customs(2022DK09).
文摘[Objectives]The paper was to establish an ultra high performance liquid chromatography-quadrupole/linear ion trap complex mass spectrometry for the determination of 10 kinds ofα2-receptor agonists in animal derived food.[Methods]The samples were extracted with sodium carbonate buffer solution and ethyl acetate,and analyzed by mass spectrometry after solid phase extraction and high performance liquid chromatography separation.[Results]Ten kinds ofα2-receptor agonists showed a good linear relationship in the range of 1-100μg/mL,with the average recovery of over 69%and the relative standard deviation less than 8.32%.The detection limit of 10 kinds of α_(2)-receptor agonists was up to 1μg/kg.[Conclusions]The method has good selectivity and strong anti-interference ability,and can meet the requirements of 10 kinds ofα2-receptor agonists residues in animal derived food.
文摘Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures presents challenges.As the CEPC will work at four beam energies of Z,W,Higgs and ttbar mode,the DAQ magnets will operate at four field gradients spanning from 3.18 to 12.63 T/m.The first short quadrupole magnet prototype with the bore diameter of 76 mm and magnetic length of 1.0 m revealed the problems of large magnetic field harmonics and a magnetic center shift within the beam energy range.Accordingly,a compensation method was proposed in this work to solve the field crosstalk effect.By adjusting the gap height at the middle of the two apertures,the field harmonics and magnetic center shift are significantly reduced.After optimization,the short prototype was modified using a new scheme.The field simulations are validated from the magnetic measurement results.Further,the multipole field meets the requirements of the four beam energies.The detailed magnetic field optimization,field harmonics adjustment,and measurement results are presented herein.
基金the National Natural Science Foundation of China(Nos.12205001,11935001,and 12204001)the Scientific Research program of Anhui University of Finance and Economics(Nos.ACKYC22080 and ACKYC220801).
文摘The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0304202 and 2017YFA0205700)the National Natural Science Foundation of China(Grant Nos.11875231 and 11935012)the Fundamental Research Funds for the Central Universities(Grant No.2018FZA3005).
文摘We investigate the rotating wave approximation applied in the high-spin quantum system driven by a linearly polarized alternating magnetic field in the presence of quadrupole interactions.The conventional way to apply the rotating wave approximation in a driven high-spin system is to assume the dynamics being restricted in the reduced Hilbert space.However,when the driving strength is relatively strong or the driving is off resonant,the leakage from the target resonance subspace cannot be neglected for a multi-level quantum system.We propose the correct formalism to apply the rotating wave approximation in the full Hilbert space by taking this leakage into account.By estimating the operator fidelity of the time propagator,our formalism applied in the full Hilbert space unambiguously manifests great advantages over the conventional method applied in the reduced Hilbert space.
文摘While typesetting the article,in the Figs.13 and 17 there were several errors introduced.The correct Figs.13 and 17 are copied below:The original article has been corrected.
文摘The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.
文摘An ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS)was established to quickly and accurately determine the content of oleuropein in cosmetics.The samples were extracted with methanol-aqueous solution,and the mobile phase with methanol-formic acid solution(0.1 mol/L)=40∶60 was separated by Agilent ZORBAX Eclipse Plus C18(2.1 mm×50 mm×1.8μm-Micron)column temperature 30℃,flow rate 0.3 mL/min.The MS end was detected by electrospray negative mode ionization(ESI-)and multiple reaction monitoring(MRM)mode.The results show a good linear relationship in the range of 0.002~5 mg/L,with a correlation coefficient R2 of 0.999,5.Method recovery range from 84.2%~107.6%and the relative standard deviation RSD is 5.8%.The detection time is 5 min,the detection limit is 0.000,6 mg/L,and the limit of quantification is 0.002 mg/L.This method has the advantages of convenient operation,low quantification limit,high precision and good repeatability,and is suitable for measuring the content of oleuropein in many kinds of cosmetics.
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.
基金the financial support from China Postdoctoral Science Foundation(2018M643205)
文摘Tea is a widely consumed beverage and has many important physiological properties and potential health benefits. In this study, a novel method based on supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) was developed to simultaneously determine 11 amino acids in different types of tea (green teas, Oolong tea, black tea and Pu-erh tea). The separation conditions for the analysis of the selected amino acids including the column type, temperature and backpressure as well as the type of additive, were carefully optimized. The best separation of the 11 amino acids was obtained by adding water (5%, v/v) and trifluoroacetic acid (0.4%, v/v) to the organic modifier (methanol). Finally, the developed SFC-MS method was fully validated and successfully applied to the determination of these amino acids in six different tea samples. Good linearity (r ≥ 0.993), precision (RSDs≤ 2.99%), accuracy (91.95%-107.09%) as well as good sample stability were observed. The limits of detection ranged from 1.42 to 14.69 ng/mL, while the limits of quantification were between 4.53 and 47.0 ng/mL. The results indicate that the contents of the 11 amino acids in the six different tea samples are greatly influenced by the degree of fermentation. The proposed SFC-MS method shows a great potential for further investigation of tea varieties.
基金financially supported by the National Key R&D Program of China(2018YFF0212503,2019YFF0216303,and 2016YFF0200502)the National Natural Science Foundation of China(21927812)the Research Project of the National Institute of Metrology(AKY1934)。
文摘The accurate and efficient measurement of small molecule disease markers for clinical diagnosis is of great importance.In this study,a quadrupole-linear ion trap(Q-LIT)tandem mass spectrometer was designed and built in our laboratory.Target precursor ions were first selected in the quadrupole,and then injected,trapped,and fragmented simultaneously in the linear ion trap(LIT)to reduce the space charge effect,enrich the target product ions,and promote sensitivity.The targeted analytes were measured with selected reaction monitoring using a positive scan mode with electrospray ionization(ESI).Ions with a mass-to-charge ratio(m/z)ranging from 195 to 2022 were demonstrated.When scanning at 1218amu.s^(-1),unit resolution and an accuracy of higher than m/z 0.28 was obtained for m/z up to 2000.The dimensionless Mathieu parameter(q)value used in this study was 0.40 for collision-induced dissociation(CID),which was activated by resonance excitation.And an overall CID efficiency of 64%was achieved(activation time,50 ms).Guanidinoacetic acid(GAA)and creatine(CRE)were used as model compounds for small molecule clinical biomarkers.The limits of quantification were 1.0 and 0.2 nmol.L^(-1)for GAA and CRE,respectively.A total of 77 actual samples were successfully analyzed by the home-built ESI-Q-LIT tandem mass spectrometry system.The developed method can reduce matrix interference,minimize space charge effects,and avoid the chromatographic separation of complex samples to simplify the pretreatment process.This novel Q-LIT system is expected to be a good candidate for the determination of biomarkers in clinical diagnosis and therapeutics.
基金This work was supported by the NSAF Joint Foundation of China(No.U1730122)。
文摘A 325 MHz aluminum prototype of a spatially periodic RF quadrupole focusing linac was developed at the Institute of Modern Physics,Chinese Academy of Sciences,as a promising candidate for the front end of a high-current linac.It consists of an alternating series of crossbar H-type drift tubes and RF quadrupole sections.Owing to its special geometry,cavity fabrication is a major hurdle for its engineering development and application.In this paper,we report the detailed mechanical design of this structure and describe its fabrication process,including machining,assembly,and inspection.The field distribution was measured by the bead-pull technique.The results show that the field errors of both the accelerating and focusing fields are within an acceptable range.A tuning scheme for this new structure is proposed and verified.The cold test process and results are presented in detail.The development of this prototype provides valuable guidance for the application of the spatially periodic RF quadrupole structure.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2018YFC1704500)Tianjin Committee of Science and Technology of China(Grant No.21ZYJDJC00080)National Natural Science Foundation of China(Grant No.81872996).
文摘The complex composition of herbal metabolites necessitates the development of powerful analytical techniques aimed to identify the bioactive components.The seeds of Descurainia sophia(SDS)are utilized in China as a cough and asthma relieving agent.Herein,a dimension-enhanced integral approach,by combining ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry(UHPLC/IMQTOF-MS)and intelligent peak annotation,was developed to rapidly characterize the multicomponents from SDS.Good chromatographic separation was achieved within 38 min on a UPLC CSH C18(2.1×100 mm,1.7μm)column which was eluted by 0.1%formic acid in water(water phase)and acetonitrile(organic phase).Collision-induced dissociation-MS^(2)data were acquired by the data-independent high-definition MS^(E)(HDMS^(E))in both the negative and positive electrospray ionization modes.A major components knockout strategy was applied to improve the characterization of those minor ingredients by enhancing the injection volume.Moreover,a self-built chemistry library was established,which could be matched by the UNIFI software enabling automatic peak annotation of the obtained HDMS^(E)data.As a result of applying the intelligent peak annotation workflows and further confirmation process,a total of 53 compounds were identified or tentatively characterized from the SDS,including 29 flavonoids,one uridine derivative,four glucosides,one lignin,one phenolic compound,and 17 others.Notably,four-dimensional information related to the structure(e.g.,retention time,collision cross section,MS^(1)and MS^(2)data)was obtained for each component by the developed integral approach,and the results would greatly benefit the quality control of SDS.
基金supported by the National Natural Science Fundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2013 Opening Fund of LNM,Institute of Mechanics,Chinese Academy of Sciences
文摘Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434011,11674334,and 11747601)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-1)
文摘We numerically investigate the ground-state properties of a trapped Bose–Einstein condensate with quadrupole–quadrupole interaction.We quantitatively characterize the deformations of the condensate induced by the quadrupolar interaction.We also map out the stability diagram of the condensates and explore the trap geometry dependence of the stability.
文摘A new approximate metric representing the spacetime of a rotating deformed body is obtained by perturbing the Kerr metric to include up to the second order of the quadrupole moment. It has a simple form, because it is Kerr-like. Its Taylor expansion form coincides with second order quadrupole metrics with slow rotation already found. Moreover, it can be transformed to an improved Hartle-Thorne metric, which guarantees its validity to be useful in studying compact object, and it is possible to find an inner solution.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434015,91336106 and 11004224the National Basic Research Program of China under Grant No 2011CB921601
文摘We experimentally produce the rubidium Bose-Einstein condensate in an optically plugged magnetic quadrupole trap. A far blue-detuned focused laser beam with a wavelength of 532nm is plugged in the center of the magnetic quadrupole trap to increase the number of trapped atoms and to suppress the heating. An rf evaporative cooling in the magneto-optical hybrid trap is applied to decrease the atom temperature into degeneracy. The atom number of the condensate is 1.2(0.4)× 10^5 and the temperature is below lOOnK. We also study characteristic behaviors of the condensate, such as phase space density, condensate fraction and anisotropic expansion.
文摘Dependence of decamethylcyclopentasiloxane (DMCPS) organosilicon dissociation on ionized energy in the energy range of 25 eV to 70 eV is investigated by using a quadrupole mass spectrometry. At the ionized energy below 55 eV, the dissociation of DMCPS is dominant. As the ionized energy is above 55 eV, the DMCPS dissociation achieves the maximum cross section, while the fragments from the DMCPS dissociation can further dissociate, which leads to a different ingredient of fragments. At the lower ionized energy of 25 eV, the main fragments are SiOC2H+, SiCH+, Si+, O+ and CH+ ions, which shows an important effect on the SiCOH low-k film deposition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874064)the Strategic Priority and the Research Program of the Chinese Academy of Sciences(Grant No.XDB21030300)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFA0302104)Yong Liu acknowledges the Project of Hebei Educational Department,China(Grant No.ZD2018015)the Natural Science Foundation of Hebei Province,China(Grant No.A2019203507)Bing-Bing Suo acknowledges the financial support from the National Natural Science foundation of China(Grant Nos.21673174 and 21873077).
文摘Electric quadrupole moments of low-lying excited states of Yb^+are calculated by relativistic coupled-cluster theory with perturbations from external fields.The field-dependent energy differentiation provides accurate values of the electric quadrupole moments of^2P3/2,^2D3/2,5/2,and^2F5/2,7/2 states which agree well with experimental values.The important role of the electronic correlation to the electric quadrupole moments is investigated.Our calculations indicate the early dispute of the electric quadrupole moment of the Yb^+(2F7/2)state for which the measured and theoretical values have a large discrepancy.These electric quadrupole moment values can help us to determine the electric quadrupole shifts in start-of-the-art experiments of the Yb+ion.
基金Project supported by the State Key Development Program for Basic Research Program of China (Grant No 2003CB716300), the National Natural Science Foundation of China (Grant No 10547114) and the Scientific Research Fund of Hunan Provincial Education Department (Grant No 02C202).
文摘In this paper we investigate the dynamics of a test particle in the gravitational field with a quadrupole. By constructing Poincare sections for different values of the parameters and initial conditions, we find a chaotic evolution.From these Poincare sections, we further confirm that the chaotic evolution of the test particle originates from the quadrupole.