This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the ...This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the levels of the qualitative factors interact with the levels of the quantitative factors. Under a general covariance structure of the response vector y, here we establish that the determinant of the information matrix of a product design can be separated into two parts corresponding to the two marginal designs. Moreover, it is also proved that D-optimal designs do not depend on the covariance structure if we assume hierarchically ordered system of regression models.展开更多
基金supported by the National Natural Science Foundation of China (Nos.11971318, 11871143)the Fundamental Research Funds for the Central Universities (No.2232020D-38)。
文摘This paper considers a linear regression model involving both quantitative and qualitative factors and an m-dimensional response variable y. The main purpose of this paper is to investigate D-optimal designs when the levels of the qualitative factors interact with the levels of the quantitative factors. Under a general covariance structure of the response vector y, here we establish that the determinant of the information matrix of a product design can be separated into two parts corresponding to the two marginal designs. Moreover, it is also proved that D-optimal designs do not depend on the covariance structure if we assume hierarchically ordered system of regression models.