For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome t...This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value,the model adopts LM (Leven-berg-Marquardt) algorithm to achieve a higher speed and a lower error rate. When factors affecting the study object are identified,the reservoir's 2005 measured values are used as sample data to test the model. The number of neurons and the type of transfer functions in the hidden layer of the neural network are changed from time to time to achieve the best forecast results. Through simulation testing the model shows high efficiency in forecasting the water quality of the reservoir.展开更多
In the paper,we solve the problems of air quality prediction and evaluation. Firstly,the original data of air quality monitoring are classified by fuzzy C means clustering algorithm( FCM); then the BP neural network...In the paper,we solve the problems of air quality prediction and evaluation. Firstly,the original data of air quality monitoring are classified by fuzzy C means clustering algorithm( FCM); then the BP neural network model to predict the level of air quality is built through the simulation training of data. Experiments show that the model has good generalization ability and strong stability,and the prediction accuracy is higher,which has certain application value.展开更多
In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the ta...In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the targeted and efficient control of air pollution, formulation of prevention and control strategy, and improvement of living environment. Based on the existing data of 6 air quality indices, the air quality data were reclassified by using FCM algorithm, obtaining the clustering center, which minimized the cost function of non-similar index. Then, the reclassified 6 classes of data were proceeded with BP neural network training and simulation, so as to achieve the purpose of identification, thereby forming a new air quality evaluation system.展开更多
Aiming at the problem of the quality chain synergy effects evaluation, this paper constructed an index system of quality chain synergetic evaluation and established quality chain synergetic evaluation model of BP neur...Aiming at the problem of the quality chain synergy effects evaluation, this paper constructed an index system of quality chain synergetic evaluation and established quality chain synergetic evaluation model of BP neural network. On the basis of training original data by BP neural network and processing the original sample data by the method of Grey Theory, the text achieved the measure of quality chain synergy effects. And the validity of the method is also verified by simulation analysis展开更多
Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results f...Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system.展开更多
Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical pr...Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.展开更多
针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓...针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。展开更多
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
基金Project (No.2006AA06Z305) supported by the Hi-Tech Research and Development Program (863) of China
文摘This paper deals with the study of a water quality forecast model through application of BP neural network technique and GUI (Graphical User Interfaces) function of MATLAB at Yuqiao reservoir in Tianjin. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value,the model adopts LM (Leven-berg-Marquardt) algorithm to achieve a higher speed and a lower error rate. When factors affecting the study object are identified,the reservoir's 2005 measured values are used as sample data to test the model. The number of neurons and the type of transfer functions in the hidden layer of the neural network are changed from time to time to achieve the best forecast results. Through simulation testing the model shows high efficiency in forecasting the water quality of the reservoir.
基金Supported by Youth Fund Research Project of Science and Technology of Hebei Colleges and Universities(QN2016243)
文摘In the paper,we solve the problems of air quality prediction and evaluation. Firstly,the original data of air quality monitoring are classified by fuzzy C means clustering algorithm( FCM); then the BP neural network model to predict the level of air quality is built through the simulation training of data. Experiments show that the model has good generalization ability and strong stability,and the prediction accuracy is higher,which has certain application value.
基金Supported by the Youth Foundation for Science and Technology Research of Higher of Universities in Henan Province(QN2016243)
文摘In order to solve the limitations of existing air quality evaluation system, a new air quality evaluation system was established based on FCM, the BP neural network, with the aim to provide scientific bases for the targeted and efficient control of air pollution, formulation of prevention and control strategy, and improvement of living environment. Based on the existing data of 6 air quality indices, the air quality data were reclassified by using FCM algorithm, obtaining the clustering center, which minimized the cost function of non-similar index. Then, the reclassified 6 classes of data were proceeded with BP neural network training and simulation, so as to achieve the purpose of identification, thereby forming a new air quality evaluation system.
基金supported by the National Natural Science Foundation of China(U1404702)
文摘Aiming at the problem of the quality chain synergy effects evaluation, this paper constructed an index system of quality chain synergetic evaluation and established quality chain synergetic evaluation model of BP neural network. On the basis of training original data by BP neural network and processing the original sample data by the method of Grey Theory, the text achieved the measure of quality chain synergy effects. And the validity of the method is also verified by simulation analysis
文摘Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system.
基金supported by the Program of New Century Excellent Talents of the Ministry of Education of China(NCET-08-0080)the National High Technology Research and Development Program("863"Program)of China(2009AA03Z525)+1 种基金the Fundamental Research Funds for the Central Universities(DUT11ZD115)the Science and Technology Fund of Dalian City(2009J21DW003)
文摘Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.
文摘针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。