As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes sig...This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.展开更多
In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.Th...In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.The acquisition of BeiDou signal is processed in off-line mode and the evaluation is performed by taking signal power spectrum,eye diagram,constellation,correlation,loss and s-curve deviation on AltBOC as signal quality evaluation parameters.The results illustrate that the new system signal,namely AltBOC signal,has the best performance in code tracking precision,anti-jamming and anti-multipath.展开更多
Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve t...Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve the collection of information.To get good transmission performance for 2.4 GHz wireless sensor nodes at the working face we calculated the reflection properties of electromagnetic waves from a flat metal plate.Using the cascade impedance method(CIM),we studied transmission attenuation and compared the results to actual tests.The results show that the effective transmission distance of 2.4 GHz wireless sensor nodes meets the stipulations of the ZigBee protocol.展开更多
The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is ...The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is designed to prevent the propagation of error and valuate the signal performance. The relevant software and hardware factors that affect the output are analyzed.A single channel time-division multiplexing(TDM) method for multicorrelation data extraction is proposed. Statistical characteristics of the correlation output data for both vector and scalar structures are evaluated. Simulation results show that correlation outputs for both structures follow normal or Chi-squared distributions in normal conditions, and the Gamma distribution in harsh conditions. It is shown that a tracking model based on the multi-channel fusion hardly changes the probability distribution of the correlation output in the normal case, but it reduces the ranging error of the code loop, and hence the tracking ability of the code loop for weak signals is improved. Furthermore, vector tracking changes the pseudorange characteristics of channels anytime, and affects the mutual correlation outputs of the code loops in the abnormal case. This study provides a basis for the subsequent design of autonomous integrity algorithms for vector tracking.展开更多
Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. I...Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. In order to solve the problems associated with these risks, receiver autonomous integrity monitoring(RAIM) and ground-based signal quality monitoring stations are widely used. Although these technologies can protect the user from the risks, they are expensive and have limited region coverage. Autonomous monitoring of satellite signal quality is an effective method to eliminate these shortcomings of the RAIM and ground-based signal quality monitoring stations; thus, a new navigation signal quality monitoring receiver which can be equipped on the satellite platform of GNSS is proposed in this paper. Because this satellite-equipped receiver is tightly coupled with navigation payload, the system architecture and its preliminary design procedure are first introduced. In theory, code-tracking loop is able to provide accurate time delay estimation of received signals. However, because of the nonlinear characteristics of the navigation payload, the traditional code-tracking loop introduces errors. To eliminate these errors, the dummy massive parallel correlators(DMPC) technique is proposed. This technique can reconstruct the cross correlation function of a navigation signal with a high code phase resolution. Combining the DMPC and direct radio frequency(RF) sampling technology, the satellite-equipped receiver can calibrate the differential code bias(DCB) accurately. In the meantime, the abnormities and failures of navigation signal can also be monitored. Finally, the accuracy of DCB calibration and the performance of fault monitoring have been verified by practical test data and numerical simulation data, respectively. The results show that the accuracy of DCB calibration is less than 0.1 ns and the novel satellite-equipped receiver can monitor the signal quality effectively.展开更多
This research provides a new way to measure error in microarray data in order to improve gene expression analysis. Microarray data contains many sources of error. In order to glean information about mRNA expression le...This research provides a new way to measure error in microarray data in order to improve gene expression analysis. Microarray data contains many sources of error. In order to glean information about mRNA expression levels, the true signal must first be segregated from noise. This research focuses on the variation that can be captured at the spot level in cDNA microarray images. Variation at other levels, due to differences at the array, dye, and block levels, can be corrected for by a variety of existing normalization procedures. Two signal quality estimates that capture the reliability of each spot printed on a microarray are described. A parametric estimate of within-spot vari ance, referred to here as σ^2spot, assumes that pixels follow a normal distribution and are spatially correlated. A non-parametric estimate of error, called the mean square prediction error (MSPE), assumes that spots of high quality possess pixels that are similar to their neighbors. This paper will provide a framework to use either spot quality measure in downstream analysis, specifically as weights in regression models. Using these spot quality estimates as weights can result in greater efficiency, in a statistical sense, when modeling mi- croarray data.展开更多
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.
基金The Science and Technology of Henan Province under contract No.212102310029the National Natural Science Founation Cultivation Project of Xuchang University under contract No.2022GJPY007the Educational Teaching Research and Practice Project of Xuchang University under contract No.XCU2021-YB-024.
文摘This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation.
文摘In order to ensure that Chinese BeiDou satellite navigation system runs smoothly,the assessment of signal quality has become a significant task.Alternative binary offset carrier(AltBOC)is BeiDou B2 frequency signal.The acquisition of BeiDou signal is processed in off-line mode and the evaluation is performed by taking signal power spectrum,eye diagram,constellation,correlation,loss and s-curve deviation on AltBOC as signal quality evaluation parameters.The results illustrate that the new system signal,namely AltBOC signal,has the best performance in code tracking precision,anti-jamming and anti-multipath.
基金Project 60774090 supported by the National Natural Science Foundation of China
文摘Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve the collection of information.To get good transmission performance for 2.4 GHz wireless sensor nodes at the working face we calculated the reflection properties of electromagnetic waves from a flat metal plate.Using the cascade impedance method(CIM),we studied transmission attenuation and compared the results to actual tests.The results show that the effective transmission distance of 2.4 GHz wireless sensor nodes meets the stipulations of the ZigBee protocol.
基金supported by the National Natural Science Fundation of China(41474027)
文摘The code tracking loop is a key component for user positioning. The pseudorange information of Bei Dou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is designed to prevent the propagation of error and valuate the signal performance. The relevant software and hardware factors that affect the output are analyzed.A single channel time-division multiplexing(TDM) method for multicorrelation data extraction is proposed. Statistical characteristics of the correlation output data for both vector and scalar structures are evaluated. Simulation results show that correlation outputs for both structures follow normal or Chi-squared distributions in normal conditions, and the Gamma distribution in harsh conditions. It is shown that a tracking model based on the multi-channel fusion hardly changes the probability distribution of the correlation output in the normal case, but it reduces the ranging error of the code loop, and hence the tracking ability of the code loop for weak signals is improved. Furthermore, vector tracking changes the pseudorange characteristics of channels anytime, and affects the mutual correlation outputs of the code loops in the abnormal case. This study provides a basis for the subsequent design of autonomous integrity algorithms for vector tracking.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.6132XX)the National Hi-Tech Research and Development Program of China(“863”Project)(Grant No.2015AA7054032)the National Natural Science Foundation of China(Grant No.60901017)
文摘Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. In order to solve the problems associated with these risks, receiver autonomous integrity monitoring(RAIM) and ground-based signal quality monitoring stations are widely used. Although these technologies can protect the user from the risks, they are expensive and have limited region coverage. Autonomous monitoring of satellite signal quality is an effective method to eliminate these shortcomings of the RAIM and ground-based signal quality monitoring stations; thus, a new navigation signal quality monitoring receiver which can be equipped on the satellite platform of GNSS is proposed in this paper. Because this satellite-equipped receiver is tightly coupled with navigation payload, the system architecture and its preliminary design procedure are first introduced. In theory, code-tracking loop is able to provide accurate time delay estimation of received signals. However, because of the nonlinear characteristics of the navigation payload, the traditional code-tracking loop introduces errors. To eliminate these errors, the dummy massive parallel correlators(DMPC) technique is proposed. This technique can reconstruct the cross correlation function of a navigation signal with a high code phase resolution. Combining the DMPC and direct radio frequency(RF) sampling technology, the satellite-equipped receiver can calibrate the differential code bias(DCB) accurately. In the meantime, the abnormities and failures of navigation signal can also be monitored. Finally, the accuracy of DCB calibration and the performance of fault monitoring have been verified by practical test data and numerical simulation data, respectively. The results show that the accuracy of DCB calibration is less than 0.1 ns and the novel satellite-equipped receiver can monitor the signal quality effectively.
文摘This research provides a new way to measure error in microarray data in order to improve gene expression analysis. Microarray data contains many sources of error. In order to glean information about mRNA expression levels, the true signal must first be segregated from noise. This research focuses on the variation that can be captured at the spot level in cDNA microarray images. Variation at other levels, due to differences at the array, dye, and block levels, can be corrected for by a variety of existing normalization procedures. Two signal quality estimates that capture the reliability of each spot printed on a microarray are described. A parametric estimate of within-spot vari ance, referred to here as σ^2spot, assumes that pixels follow a normal distribution and are spatially correlated. A non-parametric estimate of error, called the mean square prediction error (MSPE), assumes that spots of high quality possess pixels that are similar to their neighbors. This paper will provide a framework to use either spot quality measure in downstream analysis, specifically as weights in regression models. Using these spot quality estimates as weights can result in greater efficiency, in a statistical sense, when modeling mi- croarray data.