Nb-doped TiC ceramic,or (NbyTi1-y) Cx,in which amount of Nb element added is increased from zero to 40Wt. %, synthisized -with self-propagating high temperature synthesis,is studied with SCF-Xa-DV,a quantum chemistry ...Nb-doped TiC ceramic,or (NbyTi1-y) Cx,in which amount of Nb element added is increased from zero to 40Wt. %, synthisized -with self-propagating high temperature synthesis,is studied with SCF-Xa-DV,a quantum chemistry cal-culating method. The chemical bonding is studied to discuss the relation between structrues and properties. Several classes of models in which there is no vacancy,one vacancy or two vacan-cies have been calculated. From the calculated results of bond or-der, a measure of covalent bond strength,and molecule orbital contour map, it is concluded that when Nb element added in-creases, the vacancies increase correspondingly,the covalent com-ponent of chemical bonds of the samples decreases -while the met-al-bonding component increases, so the hardness and resistance of the samples decrease.展开更多
Polaronic effect is important in the current researches on quantum dots (QD). This paper reported a new concept of the 'confined polaron', their size dependent formation possibilities and energy variation in d...Polaronic effect is important in the current researches on quantum dots (QD). This paper reported a new concept of the 'confined polaron', their size dependent formation possibilities and energy variation in different QD systems, with an indication of contribution from both intrinsic and/or extrinsic phonons. To understand the spectro-scopic characteristics of porous silicon (PS), we find that luminescence behavior of oxidized porous silicon is in good agreement with the model of interfacial confined polaron in QDs. This conclusion is useful to unveiling the mechanmism of PS luminescence.展开更多
Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics tech- nology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and inv...Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics tech- nology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter-nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to un- derstanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.展开更多
文摘Nb-doped TiC ceramic,or (NbyTi1-y) Cx,in which amount of Nb element added is increased from zero to 40Wt. %, synthisized -with self-propagating high temperature synthesis,is studied with SCF-Xa-DV,a quantum chemistry cal-culating method. The chemical bonding is studied to discuss the relation between structrues and properties. Several classes of models in which there is no vacancy,one vacancy or two vacan-cies have been calculated. From the calculated results of bond or-der, a measure of covalent bond strength,and molecule orbital contour map, it is concluded that when Nb element added in-creases, the vacancies increase correspondingly,the covalent com-ponent of chemical bonds of the samples decreases -while the met-al-bonding component increases, so the hardness and resistance of the samples decrease.
文摘Polaronic effect is important in the current researches on quantum dots (QD). This paper reported a new concept of the 'confined polaron', their size dependent formation possibilities and energy variation in different QD systems, with an indication of contribution from both intrinsic and/or extrinsic phonons. To understand the spectro-scopic characteristics of porous silicon (PS), we find that luminescence behavior of oxidized porous silicon is in good agreement with the model of interfacial confined polaron in QDs. This conclusion is useful to unveiling the mechanmism of PS luminescence.
基金This work was financially supported by the National Natural Science Foundation of China under Grant No. 60721004, and the National Basic Research Program of China under Grant No. 2009CB010600.
文摘Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics tech- nology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter-nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to un- derstanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.