This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove syste...This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gahge observations, SEs, and MPs to reduce random error from each source and to produce a gauge--satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011- 14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between B MEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.展开更多
We demonstrate theoretically and experimentally how changes of a terahertz (THz) beam induced by the sample affect the accuracy of the determination of THz dielectric properties in THz time-domain transmission spect...We demonstrate theoretically and experimentally how changes of a terahertz (THz) beam induced by the sample affect the accuracy of the determination of THz dielectric properties in THz time-domain transmission spectros- copy (TDTS). We apply a Gaussian beam and the ABCD matrix formalism to describe the propagation of the THz beam in a focused beam setup. The insertion of the sample induces a focus displacement which is absent in the reference t without a sample. We show how the focus displacement can be corrected. The THz optical properties after focus displacement correction reported in this Letter are in quantitative agreement with those obtained using collimated beam THz-TDTSinpreviouswork.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275076, 41305057, 41175066, 41175086, and 40905046)the Beijing Natural Science Foundation (Grant No. 8144046)+1 种基金the National High Technology Research and Development Program of China (Grant Nos. 2009AA122005 and 2009BAC51B03)the National Basic Research Program of China (Grant No. 2010CB 951902)
文摘This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gahge observations, SEs, and MPs to reduce random error from each source and to produce a gauge--satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011- 14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between B MEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.
基金the support from the Center for Applied Photonics (CAP) at the University of Konstanzthe DFG through the SFB 767 (Germany)the China Scholarship Council (CSC)
文摘We demonstrate theoretically and experimentally how changes of a terahertz (THz) beam induced by the sample affect the accuracy of the determination of THz dielectric properties in THz time-domain transmission spectros- copy (TDTS). We apply a Gaussian beam and the ABCD matrix formalism to describe the propagation of the THz beam in a focused beam setup. The insertion of the sample induces a focus displacement which is absent in the reference t without a sample. We show how the focus displacement can be corrected. The THz optical properties after focus displacement correction reported in this Letter are in quantitative agreement with those obtained using collimated beam THz-TDTSinpreviouswork.