Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great atten...Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great attention in the field of hydrogeology during recent years. As there is no surface outflow from Namco, the large water imbalance can only be explained by water seepage. Synthetic aperture radar (SAR) image data were used for the first time in combination with hydrological data actually measured in the field and meteorological station data, to quantitatively acquire the information of surface fluctuation, water storage variation, and to estimate groundwater leakage from Namco Lake. The results provide theoretical support and data for further understanding the processes and extent of water resource response to global climate change, and also provide a scientific basis for rational development and utilization of water resource in the Tibetan Plateau.展开更多
Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-e...Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.展开更多
In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepa...In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepage velocities are measured through applying AC voltage on the optical fiber.The analyzing results show that the optical fiber heating temperature and seepage velocity are related in quadratic function.The quantitative relations of optical fiber temperature and seepage velocity under different soil types and compaction degree are fitted.Analysis on how the compaction degree influences the relation of optical fiber temperature and seepage velocity shows that with the increase of compaction degree,optical fiber heating temperature will gradually decline.The influence of soil type on fiber heating temperature is very complex.In practice,according to the characteristics of the soil,determining quantitative relationship and implementing quantitative monitoring of the seepage velocity are needed.展开更多
The monitoring of flue gas of the thermal power plants is of great significance in energy conservation and environmental protection.Spectral technique has been widely used in the gas monitoring system for predicting t...The monitoring of flue gas of the thermal power plants is of great significance in energy conservation and environmental protection.Spectral technique has been widely used in the gas monitoring system for predicting the concentrations of specific gas components.This paper proposes flue gas monitoring system with empirically-trained dictionary(ETD)to deal with the complexity and biases brought by the uninformative spectral data.Firstly,ETD is extracted from the raw spectral data by an alternative optimization between the sparse coding stage and the dictionary update stage to minimize the error of sparse representation.D1,D2 and D3 are three types of ETD obtained by different methods.Then,the predictive model of component concentration is constructed on the ETD.In the experiments,two real flue gas spectral datasets are collected and the proposed method combined with the partial least squares,the background propagation neural network and the support vector machines are performed.Moreover,the optimal parameters are chosen according to the 10-fold root-mean-square error of cross validation.The experimental results demonstrate that the proposed method can be used for quantitative analysis effectively and ETD can be applied to the gas monitoring systems.展开更多
Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy fo...Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.展开更多
Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperforma...Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.展开更多
The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. ...The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. Schrodinger Hamiltonian is presented and compared to Black-Scholes-Schrodinger Hamiltonian. Similarity was demonstrated and it was proved that Schrodinger Hamiltonian was Hermitian while Black-Scholes Hamiltonian was anti-Hermitian. By using Schrodinger equation, price of option was implemented in the Schrodinger equation and by using Black-Scholes Hamiltonian. Black-Scholes equation was derived and a new and really powerful approach was demonstrated that could have immense application in the quantitative analysis and asset pricing.展开更多
The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical cal...The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical calculation by using Poincaré surface section is used to get the invariant tori for our problem.展开更多
The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g...The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g., wind turbines in cold climate areas, aircrafts, etc.). This monitoring is a high-reliability time-critical task. The work consistently derives a scalar wave PDE of the Stokes type for the non-equilibrium part (NEP) of the average normal stress in a medium. The explicit expression for the NEP of the corresponding pressure and the solution-adequateness condition are also obtained. The derived Stokes-type wave equation includes the stress relaxation time and is applicable to gases, liquids, and solids.展开更多
We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger ...We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.展开更多
Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at hig...Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.展开更多
BACKGROUND Exosomes are 30-150 nm nanovesicles with sophisticated nucleic acids cargo,actively secreted by all cells within human body,and found in abundance in all body fluids,including urine.These extracellular vesi...BACKGROUND Exosomes are 30-150 nm nanovesicles with sophisticated nucleic acids cargo,actively secreted by all cells within human body,and found in abundance in all body fluids,including urine.These extracellular vesicles have tremendous potential for next generation diagnostics,theoretically enabling noninvasive assessment of organ and tissue function via liquid biopsy analysis.AIM Recently,feasibility of an exosomal molecular test was demonstrated for postorgan transplant monitoring:Analysis of urine-derived exosomal mRNA cargo allowed early detection of kidney allograft rejection.Here,we further studied urine-derived exosomes and their mRNA content as a highly promising diagnostic modality.This included stability studies of urine samples and exosomal mRNA upon transportation from the point of collection to a centralized testing facility,short-term storage of urine at different conditions upon receipt till the point molecular assay is performed,and effects of various potentially interfering substances on the downstream quantitative polymerase chain reaction(qPCR)assay.METHODS The urine specimens were stored at various conditions and pre-processed in different ways.Next,samples were passed through the columns to capture all extracellular vesicles,the vesicles were lysed to release their content and the exosomal RNA was purified on the mini-columns,reverse transcription was performed,next pre-amplification,followed by a qPCR analysis for a panel of RESULTS To ensure exosomal RNA integrity,the harvested urine specimens should be shipped refrigerated,by overnight delivery.Urine can next be stored at the test site for up to 1 wk at 4°C,and long term should be frozen at-80°C.Urine specimens must be centrifuge at low G-force to deplete cells and debris,to ensure consistent top results in downstream molecular assays.All commonly used medications(tacrolimus,cyclosporin A,mycophenolic acid,everolimus,sirolimus,ascomycin,teriflunomide)were tested and confirmed that they do not cause assay interference.CONCLUSION mRNA from urine-derived exosomes was shown to be stable across a broad range of conditions and produced accurate results when analyzed via qPCR assay for detection of kidney allograft rejection.We identified the most optimal conditions for every step of the process,ensuring pre-analytical sample integrity and robust qPCR results.展开更多
Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenan...Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.展开更多
基金financially supported by the National Natural Science Foundation of China(grant No.61301025)the Jiangsu Provincial Natural Science Foundation of China(grant No.BK20130853)the Fundamental Research Funds for the Central Universities(grant No.2016B07114)
文摘Objective This study focused on the Namco, the largest lake on the Tibet plateau as well as the highest large lake in the world. A large imbalance between water input and output of this lake has attracted great attention in the field of hydrogeology during recent years. As there is no surface outflow from Namco, the large water imbalance can only be explained by water seepage. Synthetic aperture radar (SAR) image data were used for the first time in combination with hydrological data actually measured in the field and meteorological station data, to quantitatively acquire the information of surface fluctuation, water storage variation, and to estimate groundwater leakage from Namco Lake. The results provide theoretical support and data for further understanding the processes and extent of water resource response to global climate change, and also provide a scientific basis for rational development and utilization of water resource in the Tibetan Plateau.
基金supported by the National Key Research and Development Program of China (2016YFA0601601)National Natural Science Foundation of China (Grants Nos. U1502233,41405001)+1 种基金the Jiangsu Collaborative Innovation Center for Climate ChangePh.D. Programs Foundation of Ministry of Education of China (20135301120010)
文摘Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Nos. 2012088,2013093)
文摘In this paper,a theoretical model of temperature and velocity of a fiber is derived.A test model simulating seepage indoor is designed.The optical fiber heating temperatures under different compaction degree and seepage velocities are measured through applying AC voltage on the optical fiber.The analyzing results show that the optical fiber heating temperature and seepage velocity are related in quadratic function.The quantitative relations of optical fiber temperature and seepage velocity under different soil types and compaction degree are fitted.Analysis on how the compaction degree influences the relation of optical fiber temperature and seepage velocity shows that with the increase of compaction degree,optical fiber heating temperature will gradually decline.The influence of soil type on fiber heating temperature is very complex.In practice,according to the characteristics of the soil,determining quantitative relationship and implementing quantitative monitoring of the seepage velocity are needed.
基金supported by the National Natural Science Foundation of China(61375055)the Program for New Century Excellent Talents in University(NCET-12-0447)+2 种基金the Natural Science Foundation of Shaanxi Province of China(2014JQ8365)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE16313)the Fundamental Research Funds for the Central University
文摘The monitoring of flue gas of the thermal power plants is of great significance in energy conservation and environmental protection.Spectral technique has been widely used in the gas monitoring system for predicting the concentrations of specific gas components.This paper proposes flue gas monitoring system with empirically-trained dictionary(ETD)to deal with the complexity and biases brought by the uninformative spectral data.Firstly,ETD is extracted from the raw spectral data by an alternative optimization between the sparse coding stage and the dictionary update stage to minimize the error of sparse representation.D1,D2 and D3 are three types of ETD obtained by different methods.Then,the predictive model of component concentration is constructed on the ETD.In the experiments,two real flue gas spectral datasets are collected and the proposed method combined with the partial least squares,the background propagation neural network and the support vector machines are performed.Moreover,the optimal parameters are chosen according to the 10-fold root-mean-square error of cross validation.The experimental results demonstrate that the proposed method can be used for quantitative analysis effectively and ETD can be applied to the gas monitoring systems.
文摘Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.
基金supported by Beijing Natural Science Foundation(JQ20004)National Key Research and Development Program(2016YFA0202500)Scientific and Technological Key Project of Shanxi Province(20191102003).
文摘Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.
文摘The following paper tries to derive a Black-Scholes equation by using tools of quantum physics pertaining in that sense to Hamiltonian operator, path integrals, completeness equation, introducing ket and bra vectors. Schrodinger Hamiltonian is presented and compared to Black-Scholes-Schrodinger Hamiltonian. Similarity was demonstrated and it was proved that Schrodinger Hamiltonian was Hermitian while Black-Scholes Hamiltonian was anti-Hermitian. By using Schrodinger equation, price of option was implemented in the Schrodinger equation and by using Black-Scholes Hamiltonian. Black-Scholes equation was derived and a new and really powerful approach was demonstrated that could have immense application in the quantitative analysis and asset pricing.
文摘The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical calculation by using Poincaré surface section is used to get the invariant tori for our problem.
文摘The work deals with a mathematical model for real-time acoustic monitoring of material parameters of media in multi-state viscoelastic engineering systems continuously operating in irregular external environments (e.g., wind turbines in cold climate areas, aircrafts, etc.). This monitoring is a high-reliability time-critical task. The work consistently derives a scalar wave PDE of the Stokes type for the non-equilibrium part (NEP) of the average normal stress in a medium. The explicit expression for the NEP of the corresponding pressure and the solution-adequateness condition are also obtained. The derived Stokes-type wave equation includes the stress relaxation time and is applicable to gases, liquids, and solids.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China (Grant No.KYCX230443)。
文摘We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
文摘Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.
文摘BACKGROUND Exosomes are 30-150 nm nanovesicles with sophisticated nucleic acids cargo,actively secreted by all cells within human body,and found in abundance in all body fluids,including urine.These extracellular vesicles have tremendous potential for next generation diagnostics,theoretically enabling noninvasive assessment of organ and tissue function via liquid biopsy analysis.AIM Recently,feasibility of an exosomal molecular test was demonstrated for postorgan transplant monitoring:Analysis of urine-derived exosomal mRNA cargo allowed early detection of kidney allograft rejection.Here,we further studied urine-derived exosomes and their mRNA content as a highly promising diagnostic modality.This included stability studies of urine samples and exosomal mRNA upon transportation from the point of collection to a centralized testing facility,short-term storage of urine at different conditions upon receipt till the point molecular assay is performed,and effects of various potentially interfering substances on the downstream quantitative polymerase chain reaction(qPCR)assay.METHODS The urine specimens were stored at various conditions and pre-processed in different ways.Next,samples were passed through the columns to capture all extracellular vesicles,the vesicles were lysed to release their content and the exosomal RNA was purified on the mini-columns,reverse transcription was performed,next pre-amplification,followed by a qPCR analysis for a panel of RESULTS To ensure exosomal RNA integrity,the harvested urine specimens should be shipped refrigerated,by overnight delivery.Urine can next be stored at the test site for up to 1 wk at 4°C,and long term should be frozen at-80°C.Urine specimens must be centrifuge at low G-force to deplete cells and debris,to ensure consistent top results in downstream molecular assays.All commonly used medications(tacrolimus,cyclosporin A,mycophenolic acid,everolimus,sirolimus,ascomycin,teriflunomide)were tested and confirmed that they do not cause assay interference.CONCLUSION mRNA from urine-derived exosomes was shown to be stable across a broad range of conditions and produced accurate results when analyzed via qPCR assay for detection of kidney allograft rejection.We identified the most optimal conditions for every step of the process,ensuring pre-analytical sample integrity and robust qPCR results.
文摘Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.