期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Test Study on Flood Forecast by Merging Multi Precipitation Data
1
作者 Yin Zhiyuan Shen Tieyuan Yang Fang 《Meteorological and Environmental Research》 CAS 2018年第2期50-57,共8页
Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrat... Shuibuya control basin in upper reaches of Qingjiang River,Hubei Province was taken as the case. By combining grouping Z-I relation with ground meteorological rainfall station,rainfall estimation by radar was calibrated,and actual average surface rainfall in the basin was calculated.By combining genetic algorithm with neural network,the corrected AREM rainfall forecast model was established,to improve rainfall forecast accuracy by AREM. Finally,AREM rainfall forecast models before and after correction were input in Xin'an River hydrologic model for flood forecast test. The results showed that the corrected AREM rainfall forecast model could significantly improve forecast accuracy of accumulative rainfall,and decrease range of average relative error was more than 60%. Hourly rainfall forecast accuracy was improved somewhat,but there was certain difference from actual situation. Average deterministic coefficient of AREM flood forest test before and after correction was improved from -32. 60% to 64. 38%,and relative error of flood peak decreased from 39. 00% to 25. 04%. The improved effect of deterministic coefficient was better than relative error of flood peak,and whole flood forecast accuracy was improved somewhat. 展开更多
关键词 AREM quantitative rainfall forecast Radar quantitative rainfall estimation Genetic algorithm-neural network Flood forecast
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部