With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity...With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity relationship(QSAR) models to predict the acute toxicity(-lgEC50) of substituted aromatic compounds to Photobacterium phosphoreum were established.Four molecular descriptors that appear in the MLR model,namely,the second order valence molecular connectivity index(2XV),the energy of the highest occupied molecular orbital(EHOMO),the logarithm of n-octyl alcohol/water partition coefficient(logKow) and the Connolly molecular area(MA),were inputs of the ANN model.The root-mean-square error(RMSE) of the training and validation sets of the ANN model are 0.1359 and 0.2523,and the correlation coefficient(R) is 0.9810 and 0.8681,respectively.The leave-one-out(LOO) cross validated correlation coefficient(Q L2OO) of the MLR and ANN models is 0.6954 and 0.6708,respectively.The result showed that the two methods are complementary in the calculations.The regression method gave support to the neural network with physical explanation,and the neural network method gave a more accurate model for QSAR.In addition,some insights into the structural factors affecting the acute toxicity and toxicity mechanism of substituted aromatic compounds were discussed.展开更多
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship...Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.展开更多
Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four desc...Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.展开更多
The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activi...The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activity relationship model was established to correlate the genotoxicity of substituted nitrobenzenes with the characteristics of the substituents on benzene ring.展开更多
A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogest...A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.展开更多
Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alk...Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alkyl(1-phenylsulfonyl) cycloalkane carboxylate com- pounds to their chromatographic retention (capacity factor lgKW) and the toxicity for photo- bacterium phosphoreum (–lgEC50) were developed by using the molecular structural parameters as theoretical descriptors (r2 = 0.9501, 0.9488). The two quantitative correlation equations were consequently cross validated by leave-one-out (LOO) validation method with q2 of 0.9113 and 0.9281, respectively. The result showed that the two equations achieved in this work by B3LYP/6-31G* are both more advantageous than those from AM1, and can be used to predict the lgKW and –lgEC50 of congeneric organics.展开更多
Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the correspondin...Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) equation (r = 0.8989) to the toxicity of photobacterium phosphoreum (–lgEC50) was thus obtained. Then the structural and thermodynamic parameters were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r = 0.9274) relating to –lgEC50 was provided. The two equations achieved in this work by B3LYP/6-31G* are both more advantageous than that from AM1.展开更多
29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear ...29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) (r^2= 0.8993, q^2=0.8559) between the structural parameters and inhibition phytotoxicity to the seed germination rate of cucumis (-lgGC50) was thus obtained. Then the parameters of molecular structure and thermodynamics were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r^2=0.9268, q^2=0.8960) relating to -lgGC50 was achieved. The two equations obtained in this work by HF/6-31G^* are both more advantageous than that from AM 1.展开更多
Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using...Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.展开更多
Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: average...Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: averaged polarizability (α) and total energy (TE). The proposed model indicated that the toxicities of this kind of compounds were proportionate to α, i.e., their toxicities were relative to the molecular volume. Furthermore, 3D-QSAR model (R2=0.929, q2=0.712) of –lgEC50 was proposed by using comparative molecular force field (CoMFA) based on the molecular simulation. To our interest, 3D-QSAR model suggested that the hydrophobicity of substituents was the dominating factor for the toxicities, the electrostatic effect was the secondly important, and the steric field gave the least contribution. Comparably, the prediction ability of the 3D-QSAR model is slightly more advantageous than that of 2D-QSAR, and they can be used complementally in the toxicity description of this kind of compounds.展开更多
The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged ...The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged after comparing their geometric structures, dipole moments and inhibitory concentrations. In principle, new drug molecule could be reasonably designed by altering the place of groups and ultimately, the potential drug could be screened by comparing the dipole moments of obtained molecules.展开更多
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure ...A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.展开更多
Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Ab...Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.展开更多
Polybrominated diphenyl ether congeners (PBDEs) might activate the AhR (aromatic hydrocarbon receptor) signal transduction, and thus might have an adverse effect on the health of humans and wildlife. Because of the li...Polybrominated diphenyl ether congeners (PBDEs) might activate the AhR (aromatic hydrocarbon receptor) signal transduction, and thus might have an adverse effect on the health of humans and wildlife. Because of the limited experimental data, it is important and necessary to develop structure-based models for prediction of the toxicity of the compounds. In this study, a new molecular structure representation, molecular hologram, was employed to investigate the quantitative relationship between toxicity and molecular structures for 18 PBDEs. The model with the significant correlation and robustness (r <sup>2</sup> = 0.991, q <sup>2</sup> <sub>LOO</sub> = 0.917) was developed. To verify the robustness and prediction capacity of the derived model, 14 PBDEs were randomly selected from the database as the training set, while the rest were used as the test set. The results generated under the same modeling conditions as the optimal model are as follows: r <sup>2</sup> = 0.988, q <sup>2</sup> <sub>LOO</sub> = 0.598, r <sup>2</sup> <sub>pred</sub> = 0.955, and RMSE (root-mean-square of errors) = 0.155, suggesting the excellent ability of the derived model to predict the toxicity of PBDEs. Furthermore, the structural features and molecular mechanism related to the toxicity of PBDEs were explored using HQSAR color coding.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitativ...A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.展开更多
Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding mod...Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding modes for ERα and ERβ. In this study, the heuristic method was performed on 31 compounds binding to ERβ to select 5 variances most related to the activity (LogRBA) from 1524 variances, which were then employed to develop the best model with the significant correlation and the best predictive power (γ^2 = 0.829, q^2LOO = 0.742, γ^2pred = 0.772, q^2ext = 0.724, RMSEE = 0.395) using multiple linear regression (MLR). The model derived identified critical structural features related to the activity of binding to ERβ. The applicability domain (AD) of the model was assessed by Williams plot.展开更多
基金supported by the Natural Science Foundation of Fujian Province (D0710019)the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council (06QZR09)
文摘With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity relationship(QSAR) models to predict the acute toxicity(-lgEC50) of substituted aromatic compounds to Photobacterium phosphoreum were established.Four molecular descriptors that appear in the MLR model,namely,the second order valence molecular connectivity index(2XV),the energy of the highest occupied molecular orbital(EHOMO),the logarithm of n-octyl alcohol/water partition coefficient(logKow) and the Connolly molecular area(MA),were inputs of the ANN model.The root-mean-square error(RMSE) of the training and validation sets of the ANN model are 0.1359 and 0.2523,and the correlation coefficient(R) is 0.9810 and 0.8681,respectively.The leave-one-out(LOO) cross validated correlation coefficient(Q L2OO) of the MLR and ANN models is 0.6954 and 0.6708,respectively.The result showed that the two methods are complementary in the calculations.The regression method gave support to the neural network with physical explanation,and the neural network method gave a more accurate model for QSAR.In addition,some insights into the structural factors affecting the acute toxicity and toxicity mechanism of substituted aromatic compounds were discussed.
基金This work was supported by the National Natural Science Foundation of China (No.21477121), and the Fundamental Research Funds for the Central Universities for the support of this work. The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.
文摘Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
基金Project supported by the Natural Science Foundation of Shanghai, China(No. 06ZR14002).
文摘Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.
文摘The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activity relationship model was established to correlate the genotoxicity of substituted nitrobenzenes with the characteristics of the substituents on benzene ring.
基金Funded by Chongqing Medical University Scientific Research Foundation
文摘A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.
基金This work was financially supported by the National Basic Research Program of China (2003CB415002), the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu (04KJB150149)
文摘Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alkyl(1-phenylsulfonyl) cycloalkane carboxylate com- pounds to their chromatographic retention (capacity factor lgKW) and the toxicity for photo- bacterium phosphoreum (–lgEC50) were developed by using the molecular structural parameters as theoretical descriptors (r2 = 0.9501, 0.9488). The two quantitative correlation equations were consequently cross validated by leave-one-out (LOO) validation method with q2 of 0.9113 and 0.9281, respectively. The result showed that the two equations achieved in this work by B3LYP/6-31G* are both more advantageous than those from AM1, and can be used to predict the lgKW and –lgEC50 of congeneric organics.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486) National Natural Science Foundation of China (No. 20177008)
文摘Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) equation (r = 0.8989) to the toxicity of photobacterium phosphoreum (–lgEC50) was thus obtained. Then the structural and thermodynamic parameters were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r = 0.9274) relating to –lgEC50 was provided. The two equations achieved in this work by B3LYP/6-31G* are both more advantageous than that from AM1.
基金This work was financially supported by the National Basic Research Program of China (2003CB415002), the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu Province (04KJB150149)
文摘29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) (r^2= 0.8993, q^2=0.8559) between the structural parameters and inhibition phytotoxicity to the seed germination rate of cucumis (-lgGC50) was thus obtained. Then the parameters of molecular structure and thermodynamics were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r^2=0.9268, q^2=0.8960) relating to -lgGC50 was achieved. The two equations obtained in this work by HF/6-31G^* are both more advantageous than that from AM 1.
基金supported by the Natural Science Foundation of Zhejiang Province (No. 2008Y507280)
文摘Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.
基金supported by the Analysis Science and Technology Project of Zhejiang Province (2009F70007)
文摘Toxicities (–lgEC50) of 16 halogeno-benzenes against vibrio qinghaiensis (Q67) were measured systematically, and their 2D-QSAR model (R2=0.875, q2=0.821) was established, which included two parameters: averaged polarizability (α) and total energy (TE). The proposed model indicated that the toxicities of this kind of compounds were proportionate to α, i.e., their toxicities were relative to the molecular volume. Furthermore, 3D-QSAR model (R2=0.929, q2=0.712) of –lgEC50 was proposed by using comparative molecular force field (CoMFA) based on the molecular simulation. To our interest, 3D-QSAR model suggested that the hydrophobicity of substituents was the dominating factor for the toxicities, the electrostatic effect was the secondly important, and the steric field gave the least contribution. Comparably, the prediction ability of the 3D-QSAR model is slightly more advantageous than that of 2D-QSAR, and they can be used complementally in the toxicity description of this kind of compounds.
基金The project was supported by the National Natural Science Foundation of China (No.10274055) and Natural Science Foundation of Henan Province (2004601107)
文摘The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged after comparing their geometric structures, dipole moments and inhibitory concentrations. In principle, new drug molecule could be reasonably designed by altering the place of groups and ultimately, the potential drug could be screened by comparing the dipole moments of obtained molecules.
基金supported by the Natural Science Foundation of Shaanxi Province (2009JQ2005)Foundation of Educational Commission of Shaanxi Province (09JK358) Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0082)
文摘Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.
基金Supported by the Key Project of the National Natural Science Foundation of China (Grant No. 20737001)the National Natural Science Foundation Key Project of China (Grant No. 20737001)the Science and Technology Development Founda-tion Project of Nanjing Medical University (Grant No. 06NMUM021)
文摘Polybrominated diphenyl ether congeners (PBDEs) might activate the AhR (aromatic hydrocarbon receptor) signal transduction, and thus might have an adverse effect on the health of humans and wildlife. Because of the limited experimental data, it is important and necessary to develop structure-based models for prediction of the toxicity of the compounds. In this study, a new molecular structure representation, molecular hologram, was employed to investigate the quantitative relationship between toxicity and molecular structures for 18 PBDEs. The model with the significant correlation and robustness (r <sup>2</sup> = 0.991, q <sup>2</sup> <sub>LOO</sub> = 0.917) was developed. To verify the robustness and prediction capacity of the derived model, 14 PBDEs were randomly selected from the database as the training set, while the rest were used as the test set. The results generated under the same modeling conditions as the optimal model are as follows: r <sup>2</sup> = 0.988, q <sup>2</sup> <sub>LOO</sub> = 0.598, r <sup>2</sup> <sub>pred</sub> = 0.955, and RMSE (root-mean-square of errors) = 0.155, suggesting the excellent ability of the derived model to predict the toxicity of PBDEs. Furthermore, the structural features and molecular mechanism related to the toxicity of PBDEs were explored using HQSAR color coding.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
基金supported by the Foundation of Education Bureau,Sichuan Province (09ZB036)Technology Bureau,Sichuan Province (2006j13-141)
文摘A new molecular structural characterization(MSC)method called molecular vertexes correlative index(MVCI)was constructed in this paper.The index was used to describe the structures of 45 compounds and a quantitative structure-activity relationship(QSAR)model of toxicity(–lgEC50)was obtained through multiple linear regression(MLR)and stepwise multiple regression(SMR).The correlation coefficient(R)of the model was 0.912,and the standard deviation(SD)of the model was 0.525.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The Leave-One-Out(LOO)Cross-Validation(CV)correlation coefficient(RCV)was 0.816 and the standard deviation(SDCV)was 0.739,respectively.For the external validation,the correlation coefficient(Rtest)was 0.905 and the standard deviation(SDtest)was 0.520,respectively.The results showed that the index was superior in molecular structural representation.The stability and predictability of the model were good.
基金supported by the Science and Technology Development Foundation Key Project of Nanjing Medical University (09NJMUZ16)
文摘Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding modes for ERα and ERβ. In this study, the heuristic method was performed on 31 compounds binding to ERβ to select 5 variances most related to the activity (LogRBA) from 1524 variances, which were then employed to develop the best model with the significant correlation and the best predictive power (γ^2 = 0.829, q^2LOO = 0.742, γ^2pred = 0.772, q^2ext = 0.724, RMSEE = 0.395) using multiple linear regression (MLR). The model derived identified critical structural features related to the activity of binding to ERβ. The applicability domain (AD) of the model was assessed by Williams plot.