Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo...Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.展开更多
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship...Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.展开更多
Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four desc...Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.展开更多
A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physic...A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physicochemical variables of 20 natural amino acids separately according to different kinds of properties described, namely, hydrophobic, steric, and electronic properties as well as hydrogen bonding contributions. HSEHPCSV scales were then employed to express structures of angiotensin-converting enzyme inhibitors, bitter tasting thresholds and bactericidal 18 peptide, and to construct QSAR models based on partial least square (PLS). The results obtained are as follows: the multiple correlation coefficient (R2cum) of 0.846, 0.917 and 0.993, leave-one-out cross validated Q2cm of 0.835, 0.865 and 0.899, and root-mean-square error for estimated error (RMSEE) of 0.396, 0.187and 0.22, respectively. Satisfactory results showed that, as new amino acid scales, data of HSEHPCSV may be a useful structural expression methodology'for the studies on peptide QSAR (quantitative structure-activity relationship) due to many advantages such as plentiful structural information, definite physical and chemical meaning and easy interpretation.展开更多
With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity...With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity relationship(QSAR) models to predict the acute toxicity(-lgEC50) of substituted aromatic compounds to Photobacterium phosphoreum were established.Four molecular descriptors that appear in the MLR model,namely,the second order valence molecular connectivity index(2XV),the energy of the highest occupied molecular orbital(EHOMO),the logarithm of n-octyl alcohol/water partition coefficient(logKow) and the Connolly molecular area(MA),were inputs of the ANN model.The root-mean-square error(RMSE) of the training and validation sets of the ANN model are 0.1359 and 0.2523,and the correlation coefficient(R) is 0.9810 and 0.8681,respectively.The leave-one-out(LOO) cross validated correlation coefficient(Q L2OO) of the MLR and ANN models is 0.6954 and 0.6708,respectively.The result showed that the two methods are complementary in the calculations.The regression method gave support to the neural network with physical explanation,and the neural network method gave a more accurate model for QSAR.In addition,some insights into the structural factors affecting the acute toxicity and toxicity mechanism of substituted aromatic compounds were discussed.展开更多
Carotenoids are a family of effective active oxygen scavengers, which can reduce the danger of occurrence of chronic diseases such as cardiovascular disease, cataract, cancer, and so on. The quantitative structure-act...Carotenoids are a family of effective active oxygen scavengers, which can reduce the danger of occurrence of chronic diseases such as cardiovascular disease, cataract, cancer, and so on. The quantitative structure-activity relationship (QSAR) equation between carotenoids and antioxidant activity was established by quantum chemistry AM1, molecular mechanism (MM+) and stepwise regression analysis methods, and the model was evaluated by leave-one-out approach. The results showed that the significant molecular descriptors related to the antioxidant activity of carotenoids were the energy difference (E_HL) between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and ionization energy (Eiso). The model showed a good predictive ability (Q^2 〉 0.5).展开更多
The antioxidant and gap junctional communication(GJC) activities of carotenoids are known to be the two main anticancer mechanisms.Quantitative structure-activity relationship(QSAR) models of the two activities we...The antioxidant and gap junctional communication(GJC) activities of carotenoids are known to be the two main anticancer mechanisms.Quantitative structure-activity relationship(QSAR) models of the two activities were developed using stepwise regression and multilayer perceptron neural network based on the calculated descriptors of quantum chemistry.The results showed that the significant molecular descriptor related to the antioxidant activity of carotenoids was the HOMO-LUMO energy gap(EHL) and the molecular descriptor related to the GJC was the lowest unoccupied molecular orbital energy(ELUMO).The two models of antioxidant activity both showed good predictive power,but the predictive power of the neural network QSAR model of antioxidant activity was better.In addition,the two GJC models have similar,moderate predictive power.The possible mechanisms of antioxidant activity and GJC of carotenoids were discussed.展开更多
A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogest...A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.展开更多
The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative str...The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative structure-activity relationship(QSAR)model for the reactivity parameter lnQ was developed based on five descriptors(NAF,NOF,EαLUMO,EβHOMO,and EβLUMO)and 69 monomers with the root mean square(rms)error of 0.61.The optimal MLR model of the parameter e obtained from five descriptors(TOcl,NpN,NSO,EαHOMO and DH)and 68 monomers produced rms error of 0.42.Compared with previous models,the two optimal MLR models in this paper show satisfactory statistical characteristics.The feasibility of combining 2D descriptors obtained from the monomers and 3D descriptors calculated from the radical structures(formed from monomers+H )to predict parameters Q and e has been demonstrated.展开更多
In this study, solutions of hydrazine and its derivatives were irradiated using a pulsed electron beam to determine the half-reaction time of radiolysis. 3 D structures of the hydrazine derivatives were optimized, and...In this study, solutions of hydrazine and its derivatives were irradiated using a pulsed electron beam to determine the half-reaction time of radiolysis. 3 D structures of the hydrazine derivatives were optimized, and their energies were calculated using density functional theory with the B3 LYP method and 6-311 +(3 d, 3 p) basis set.For the first time, the 3 D quantitative structure-activity relationship(QSAR) equation describing the relationship between the hydrazine derivative structures and rate of radiolysis has been established using SPSS software.Pearson correlation analysis revealed a close correlation between the total energies of the molecules and half-reaction times. In the QSAR equation, Y =-7583.464 +54.687 X_1+94333.586 X_2,Y,X_1,and X_2 are the half-reaction time, total energy of the molecule, and orbital transition energy, respectively. The significance levels of the regression coefficients were 0.006 and 0.031, i.e., both less than 0.05. Thus, this model fully explains the relationship between hydrazine derivatives and β radiolysis stability.The results show that the total energy of the molecule and orbital transition energy are the main factors that influence the β radiolysis stability of these hydrazine derivatives.展开更多
Density functional theory (DFT) was used to calculate a set of molecular descriptors (properties) for 14 TIBO derivatives with anti-HIV activity. Principal component analysis (PCA) and hierarchical cluster analy...Density functional theory (DFT) was used to calculate a set of molecular descriptors (properties) for 14 TIBO derivatives with anti-HIV activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying TIBO derivatives according to their degree of anti-HIV activity. The PCA showed that the EHOMO, μ, LogP, QA, QB and MR variables are responsible for the separation between compounds with higher and lower anti-HIV activity. The HCA results are similar to those obtained with PCA. By using the chemometric results, four synthetic compounds were analyzed through PCA and HCA and three of them are proposed as active molecules against HIV, which is consistent with the results of clinic experiments. The methodologies of PCA and HCA provide a reliable rule for classifying new TIBO derivatives with anti-HIV activity. The model obtained showed not only statistical significance but also predictive ability.展开更多
The pathogenesis of Alzheimer’s disease (AD) putatively involves a compromised blood-brain barrier (BBB). In particular, the importance of brain-to-blood transport of brain-derived metabolites across the BBB has gain...The pathogenesis of Alzheimer’s disease (AD) putatively involves a compromised blood-brain barrier (BBB). In particular, the importance of brain-to-blood transport of brain-derived metabolites across the BBB has gained increasing attention as a potential mechanism in the pathogenesis of neurodegenerative disorders such as AD, which is characterized by the aberrant polymerization and accumulation of specific misfolded proteins, particularly β-amyloid (Aβ), a neuropathological hallmark of AD. P-glycoprotein (P-gp), a major component of the BBB, plays a role in the etiology of AD through Aβ clearance from the brain. Our QSAR models on a series of purine-type and propafenone-type substrates of P-gp showed that the interaction between P-gp and its modulators depended on Molar Refractivity, LogP, and Shape Attribute of drugs it transports. Meanwhile, another model on BBB partitioning of some compounds revealed that BBB partitioning relied upon the polar surface area, LogP, Balaban Index, the strength of a molecule combined with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex. The predictive model on BBB partitioning contributes to the discovery of some molecules through BBB as potential AD therapeutic drugs. Moreover, the interaction model of P-gp and modulators for treatment of multidrug resistance (MDR) indicates the discovery of some molecules to increase Aβ clearance from the brain and reduce Aβ brain accumulation by regulating BBB P-gp in the early stages of AD. The mechanism provides a new insight into the therapeutic strategy for AD.展开更多
The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field...The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field analysis(CoMFA),the comparative molecular similarity indices analysis(CoMSIA),and the hologram quantitative structure?activity relationship(HQSAR).The statistical results from the established models show believable predictivity based on the cross-validated value(q2>0.5) and the non-validated value(r2>0.9),The analysis on contour maps of CoMFA and CoMSIA models suggests that hydrophobic and hydrogen-bond acceptor fields are important factors that affect the AT1 antagonistic activity of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives besides the steric and electrostatic fields,The structural modification information from different atom contributions in the HQSAR model is in agreement with that in the 3D-QSAR models.展开更多
The retention behavior and lipophilicity parameters of some antiphychotics were determined using reversed-phase thin layer chromatography. Quantitative structure-activity relationships studies have been performed to c...The retention behavior and lipophilicity parameters of some antiphychotics were determined using reversed-phase thin layer chromatography. Quantitative structure-activity relationships studies have been performed to correlate the molecular characteristics of observed compounds with their retention as well as with their chromatographically determinated lipophilicity parameters. The effect of different organic modifiers (acetone, tetrahydrofuran, and methanol) has been studied. The retention of investigated compounds decreases linearly with increasing concentration of organic modifier. The chemical structures of the antipsychotics have been characterized by molecular descriptors which are calculated from the structure and related to chromatographically determinated lipophilicity parameters by multiple linear regression analysis. This approach gives us the possibility to gain insight into factors responsible for the retention as well as lipophilicity of the investigated set of the compounds. The most prominent factors affecting lipophilicity of the investigated substances are Solubility, Energy of the highest occupied molecular orbital, and Energy of the lowest unoccupied molecular orbital. The obtained models were used for interpretation of the lipophilicity of the investigated compounds. The prediction results are in good agreement with the experimental value. This study provides good information about pharmacologically important physico-chemical parameters of observed antipsychotics relevant to variations in molecular lipophilicity and chromatographic behavior. Established QSAR models could be helpful in design of novel multitarget antipsychotic compounds.展开更多
Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite s...Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.展开更多
To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal z...To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal zone to the shallow sea area in North-Central Bohai Bay,China.The results showed that the distribution of diatoms changed significantly in response to the change in water depth.Furthermore,the quantitative relationship between the distribution of dominant diatom species,their assemblages,and the water depth was established.The water depth optima for seven dominant species such as Cyclotella striata/stylorum,Paralia sulcata,and Coscinodiscus perforatus and the water depth indication range of seven diatom assemblages were obtained in the study area above the water depth(elevation)of-10 m.The quantitative relationship between surface sedimentary diatoms and water depth provides a proxy index for diatom-paleo-water depth reconstruction in the strata in Bohai Bay,China.展开更多
Direct coal liquefaction(DCL)is an important and effective method of converting coal into high-valueadded chemicals and fuel oil.In DCL,heating the direct coal liquefaction solvent(DCLS)from low to high temperature an...Direct coal liquefaction(DCL)is an important and effective method of converting coal into high-valueadded chemicals and fuel oil.In DCL,heating the direct coal liquefaction solvent(DCLS)from low to high temperature and pre-hydrogenation of the DCLS are critical steps.Therefore,studying the dissolution of hydrogen in DCLS under liquefaction conditions gains importance.However,it is difficult to precisely determine hydrogen solubility only by experiments,especially under the actual DCL conditions.To address this issue,we developed a prediction model of hydrogen solubility in a single solvent based on the machine-learning quantitative structure–property relationship(ML-QSPR)methods.The results showed that the squared correlation coefficient R^(2)=0.92 and root mean square error RMSE=0.095,indicating the model’s good statistical performance.The external validation of the model also reveals excellent accuracy and predictive ability.Molecular polarization(a)is the main factor affecting the dissolution of hydrogen in DCLS.The hydrogen solubility in acyclic alkanes increases with increasing carbon number.Whereas in polycyclic aromatics,it decreases with increasing ring number,and in hydrogenated aromatics,it increases with hydrogenation degree.This work provides a new reference for the selection and proportioning of DCLS,i.e.,a solvent with higher hydrogen solubility can be added to provide active hydrogen for the reaction and thus reduce the hydrogen pressure.Besides,it brings important insight into the theoretical significance and practical value of the DCL.展开更多
Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment...Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment of diabetes,intestinal protection,anti-inflammatory,anti-oxidation,anti-aging,hepatoprotective,immune-regulating effects.In this review,the biological activity,action mechanism and structure-activity relationship of LNT in recent years are reviewed.On this basis,the existing problems were discussed,and the future research and application of LNT were prospected.Finally,it is hoped that this review will promote the in-depth study of LNT and provide a reference for its development as a drug and functional food.展开更多
Density functional theory (DFT) was used to calculate molecular descriptors (properties) for 12 fluoro-quinolone with anti-S.pneumoniae activity. Principal component analysis (PCA) and hierarchical cluster analy...Density functional theory (DFT) was used to calculate molecular descriptors (properties) for 12 fluoro-quinolone with anti-S.pneumoniae activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce dimensionality and investigate in which variables should be more effective for classifying fluoroquinolones according to their degree of an-S.pneumoniae activity. The PCA results showed that the variables ELUMO, Q3, Q5, QA, logP, MR, VOL and △EHL of these compounds were responsible for the anti-S.pneumoniae activity. The HCA results were similar to those obtained with PCA.The methodologies of PCA and HCA provide a reliable rule for classifying new fluoroquinolones with antiS.pneumoniae activity. By using the chemometric results, 6 synthetic compounds were analyzed through the PCA and HCA and two of them are proposed as active molecules with anti-S.pneumoniae, which is consistent with the results of clinic experiments.展开更多
Taking the six common anthocyanidins in nature, i.e. cyanidin, delphinidin, malvidin, pelargonidin, peonidin and petunidin, as examples, this paper summarized the main achievements about the structure-activity relatio...Taking the six common anthocyanidins in nature, i.e. cyanidin, delphinidin, malvidin, pelargonidin, peonidin and petunidin, as examples, this paper summarized the main achievements about the structure-activity relationships of the coloration and stability of anthocyanidins. The coloration and stability of anthocyanidins are funda- mentally determined by the chemical and spatial structures of the anthocyanidins. The electron-deficient state, hydroxylation and methylation patterns, especially the ones on the B-ring, and coplanarity of the three rings of anthocyanidins are inde- pendently or synergetically, positively and/or negatively, influence the coloration and stability of the anthocyanidins. Thereinto, the in vivo colorations of anthocyanins are also related to the organ-selective and crystal- or anthocyanic vacuolar inclusion- related existence of the anthocyanidins. This review could provide a reference for the researches of the structure-optimizing and function-exploiting of anthocyanidins and also for the selection of the crops and cultivars containing specific anthocyani- din profiles.展开更多
基金the funding support from the National Key Research and Development Program of China(2019YFE0123400)the Tianjin Distinguished Young Scholars Fund(20JCJQJC00260)+4 种基金the Major Science and Technology Project of Anhui Province(202203f07020007)the Anhui Conch Group Co.,Ltdthe“111”Project(B16027)the funding support from the Natural Science Foundation of China(22209081)the fellowship of China Postdoctoral Science Foundation(2021M690082)。
文摘Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.
基金This work was supported by the National Natural Science Foundation of China (No.21477121), and the Fundamental Research Funds for the Central Universities for the support of this work. The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.
文摘Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
基金Project supported by the Natural Science Foundation of Shanghai, China(No. 06ZR14002).
文摘Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.
基金Supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA02Z312)
文摘A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physicochemical variables of 20 natural amino acids separately according to different kinds of properties described, namely, hydrophobic, steric, and electronic properties as well as hydrogen bonding contributions. HSEHPCSV scales were then employed to express structures of angiotensin-converting enzyme inhibitors, bitter tasting thresholds and bactericidal 18 peptide, and to construct QSAR models based on partial least square (PLS). The results obtained are as follows: the multiple correlation coefficient (R2cum) of 0.846, 0.917 and 0.993, leave-one-out cross validated Q2cm of 0.835, 0.865 and 0.899, and root-mean-square error for estimated error (RMSEE) of 0.396, 0.187and 0.22, respectively. Satisfactory results showed that, as new amino acid scales, data of HSEHPCSV may be a useful structural expression methodology'for the studies on peptide QSAR (quantitative structure-activity relationship) due to many advantages such as plentiful structural information, definite physical and chemical meaning and easy interpretation.
基金supported by the Natural Science Foundation of Fujian Province (D0710019)the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council (06QZR09)
文摘With the artificial neural network(ANN) method combined with the multiple linear regression(MLR),based on a series of quantum chemical descriptors and molecular connectivity indexes,quantitative structure-activity relationship(QSAR) models to predict the acute toxicity(-lgEC50) of substituted aromatic compounds to Photobacterium phosphoreum were established.Four molecular descriptors that appear in the MLR model,namely,the second order valence molecular connectivity index(2XV),the energy of the highest occupied molecular orbital(EHOMO),the logarithm of n-octyl alcohol/water partition coefficient(logKow) and the Connolly molecular area(MA),were inputs of the ANN model.The root-mean-square error(RMSE) of the training and validation sets of the ANN model are 0.1359 and 0.2523,and the correlation coefficient(R) is 0.9810 and 0.8681,respectively.The leave-one-out(LOO) cross validated correlation coefficient(Q L2OO) of the MLR and ANN models is 0.6954 and 0.6708,respectively.The result showed that the two methods are complementary in the calculations.The regression method gave support to the neural network with physical explanation,and the neural network method gave a more accurate model for QSAR.In addition,some insights into the structural factors affecting the acute toxicity and toxicity mechanism of substituted aromatic compounds were discussed.
基金Supported by the Chinese National Key Technologies R & D Program of 11th Five-year Plan (2006BAD27B06)Education Foundation of Innovative Engineering Key Project of Education Department (707034)
文摘Carotenoids are a family of effective active oxygen scavengers, which can reduce the danger of occurrence of chronic diseases such as cardiovascular disease, cataract, cancer, and so on. The quantitative structure-activity relationship (QSAR) equation between carotenoids and antioxidant activity was established by quantum chemistry AM1, molecular mechanism (MM+) and stepwise regression analysis methods, and the model was evaluated by leave-one-out approach. The results showed that the significant molecular descriptors related to the antioxidant activity of carotenoids were the energy difference (E_HL) between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and ionization energy (Eiso). The model showed a good predictive ability (Q^2 〉 0.5).
基金Supported by the Chinese National Key Technologies R&D Program of 11th Five-year Plan (2006BAD27B06)the Fundamental Research Funds for the Central Universities and Education Foundation of Innovative Engineering Key Project of Education Department (707034)
文摘The antioxidant and gap junctional communication(GJC) activities of carotenoids are known to be the two main anticancer mechanisms.Quantitative structure-activity relationship(QSAR) models of the two activities were developed using stepwise regression and multilayer perceptron neural network based on the calculated descriptors of quantum chemistry.The results showed that the significant molecular descriptor related to the antioxidant activity of carotenoids was the HOMO-LUMO energy gap(EHL) and the molecular descriptor related to the GJC was the lowest unoccupied molecular orbital energy(ELUMO).The two models of antioxidant activity both showed good predictive power,but the predictive power of the neural network QSAR model of antioxidant activity was better.In addition,the two GJC models have similar,moderate predictive power.The possible mechanisms of antioxidant activity and GJC of carotenoids were discussed.
基金Funded by Chongqing Medical University Scientific Research Foundation
文摘A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.
基金supported by the National Natural Science Foundation of China(No.21472040)the Scientific Research Fund of Hunan Education Department(Nos.16A047 and 18A344)the Open Project Program of Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration(Hunan Institute of Engineering)(2018KF11)
文摘The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative structure-activity relationship(QSAR)model for the reactivity parameter lnQ was developed based on five descriptors(NAF,NOF,EαLUMO,EβHOMO,and EβLUMO)and 69 monomers with the root mean square(rms)error of 0.61.The optimal MLR model of the parameter e obtained from five descriptors(TOcl,NpN,NSO,EαHOMO and DH)and 68 monomers produced rms error of 0.42.Compared with previous models,the two optimal MLR models in this paper show satisfactory statistical characteristics.The feasibility of combining 2D descriptors obtained from the monomers and 3D descriptors calculated from the radical structures(formed from monomers+H )to predict parameters Q and e has been demonstrated.
文摘In this study, solutions of hydrazine and its derivatives were irradiated using a pulsed electron beam to determine the half-reaction time of radiolysis. 3 D structures of the hydrazine derivatives were optimized, and their energies were calculated using density functional theory with the B3 LYP method and 6-311 +(3 d, 3 p) basis set.For the first time, the 3 D quantitative structure-activity relationship(QSAR) equation describing the relationship between the hydrazine derivative structures and rate of radiolysis has been established using SPSS software.Pearson correlation analysis revealed a close correlation between the total energies of the molecules and half-reaction times. In the QSAR equation, Y =-7583.464 +54.687 X_1+94333.586 X_2,Y,X_1,and X_2 are the half-reaction time, total energy of the molecule, and orbital transition energy, respectively. The significance levels of the regression coefficients were 0.006 and 0.031, i.e., both less than 0.05. Thus, this model fully explains the relationship between hydrazine derivatives and β radiolysis stability.The results show that the total energy of the molecule and orbital transition energy are the main factors that influence the β radiolysis stability of these hydrazine derivatives.
基金The project was supported by the National Natural Science Foundation of China (No. 10574096)
文摘Density functional theory (DFT) was used to calculate a set of molecular descriptors (properties) for 14 TIBO derivatives with anti-HIV activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying TIBO derivatives according to their degree of anti-HIV activity. The PCA showed that the EHOMO, μ, LogP, QA, QB and MR variables are responsible for the separation between compounds with higher and lower anti-HIV activity. The HCA results are similar to those obtained with PCA. By using the chemometric results, four synthetic compounds were analyzed through PCA and HCA and three of them are proposed as active molecules against HIV, which is consistent with the results of clinic experiments. The methodologies of PCA and HCA provide a reliable rule for classifying new TIBO derivatives with anti-HIV activity. The model obtained showed not only statistical significance but also predictive ability.
文摘The pathogenesis of Alzheimer’s disease (AD) putatively involves a compromised blood-brain barrier (BBB). In particular, the importance of brain-to-blood transport of brain-derived metabolites across the BBB has gained increasing attention as a potential mechanism in the pathogenesis of neurodegenerative disorders such as AD, which is characterized by the aberrant polymerization and accumulation of specific misfolded proteins, particularly β-amyloid (Aβ), a neuropathological hallmark of AD. P-glycoprotein (P-gp), a major component of the BBB, plays a role in the etiology of AD through Aβ clearance from the brain. Our QSAR models on a series of purine-type and propafenone-type substrates of P-gp showed that the interaction between P-gp and its modulators depended on Molar Refractivity, LogP, and Shape Attribute of drugs it transports. Meanwhile, another model on BBB partitioning of some compounds revealed that BBB partitioning relied upon the polar surface area, LogP, Balaban Index, the strength of a molecule combined with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex. The predictive model on BBB partitioning contributes to the discovery of some molecules through BBB as potential AD therapeutic drugs. Moreover, the interaction model of P-gp and modulators for treatment of multidrug resistance (MDR) indicates the discovery of some molecules to increase Aβ clearance from the brain and reduce Aβ brain accumulation by regulating BBB P-gp in the early stages of AD. The mechanism provides a new insight into the therapeutic strategy for AD.
基金Project(20876180) supported by the National Natural Science Foundation of China
文摘The quantitative structure-activity relationship(QSAR) of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives was studied.Three different alignment methods were used to get the models of the comparative molecular field analysis(CoMFA),the comparative molecular similarity indices analysis(CoMSIA),and the hologram quantitative structure?activity relationship(HQSAR).The statistical results from the established models show believable predictivity based on the cross-validated value(q2>0.5) and the non-validated value(r2>0.9),The analysis on contour maps of CoMFA and CoMSIA models suggests that hydrophobic and hydrogen-bond acceptor fields are important factors that affect the AT1 antagonistic activity of 2-alkyl-4-(biphenylylmethoxy) pyridine derivatives besides the steric and electrostatic fields,The structural modification information from different atom contributions in the HQSAR model is in agreement with that in the 3D-QSAR models.
基金This work was performed within the framework of the research project No 172017 supported by the Ministry of Education,Science and Technological development of Serbia.
文摘The retention behavior and lipophilicity parameters of some antiphychotics were determined using reversed-phase thin layer chromatography. Quantitative structure-activity relationships studies have been performed to correlate the molecular characteristics of observed compounds with their retention as well as with their chromatographically determinated lipophilicity parameters. The effect of different organic modifiers (acetone, tetrahydrofuran, and methanol) has been studied. The retention of investigated compounds decreases linearly with increasing concentration of organic modifier. The chemical structures of the antipsychotics have been characterized by molecular descriptors which are calculated from the structure and related to chromatographically determinated lipophilicity parameters by multiple linear regression analysis. This approach gives us the possibility to gain insight into factors responsible for the retention as well as lipophilicity of the investigated set of the compounds. The most prominent factors affecting lipophilicity of the investigated substances are Solubility, Energy of the highest occupied molecular orbital, and Energy of the lowest unoccupied molecular orbital. The obtained models were used for interpretation of the lipophilicity of the investigated compounds. The prediction results are in good agreement with the experimental value. This study provides good information about pharmacologically important physico-chemical parameters of observed antipsychotics relevant to variations in molecular lipophilicity and chromatographic behavior. Established QSAR models could be helpful in design of novel multitarget antipsychotic compounds.
基金financially supported by the National Natural Science Foundation of China(32201969)Natural Science Foundation of Henan Province(212300410297)+3 种基金Basic Research Plan of Higher Education School Key Scientific Research Project of Henan Province(21A550014)Doctoral Research Foundation of Zhengzhou University of Light Industry(2020BSJJ015)Program for Science and Technology Innovation Talents in Universities of Henan Province(20HASTIT037)Youth Talents Project of Henan Province(2020HYTP046).
文摘Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.
基金supported by the National Natural Science Foundation of China Youth Fund(41806109)the project of the China Geological Survey(DD20189506)。
文摘To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal zone to the shallow sea area in North-Central Bohai Bay,China.The results showed that the distribution of diatoms changed significantly in response to the change in water depth.Furthermore,the quantitative relationship between the distribution of dominant diatom species,their assemblages,and the water depth was established.The water depth optima for seven dominant species such as Cyclotella striata/stylorum,Paralia sulcata,and Coscinodiscus perforatus and the water depth indication range of seven diatom assemblages were obtained in the study area above the water depth(elevation)of-10 m.The quantitative relationship between surface sedimentary diatoms and water depth provides a proxy index for diatom-paleo-water depth reconstruction in the strata in Bohai Bay,China.
基金the financial support from the National Key Research and Development Program of China(2022YFB4101302-01)the National Natural Science Foundation of China(22178243)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-22-02).
文摘Direct coal liquefaction(DCL)is an important and effective method of converting coal into high-valueadded chemicals and fuel oil.In DCL,heating the direct coal liquefaction solvent(DCLS)from low to high temperature and pre-hydrogenation of the DCLS are critical steps.Therefore,studying the dissolution of hydrogen in DCLS under liquefaction conditions gains importance.However,it is difficult to precisely determine hydrogen solubility only by experiments,especially under the actual DCL conditions.To address this issue,we developed a prediction model of hydrogen solubility in a single solvent based on the machine-learning quantitative structure–property relationship(ML-QSPR)methods.The results showed that the squared correlation coefficient R^(2)=0.92 and root mean square error RMSE=0.095,indicating the model’s good statistical performance.The external validation of the model also reveals excellent accuracy and predictive ability.Molecular polarization(a)is the main factor affecting the dissolution of hydrogen in DCLS.The hydrogen solubility in acyclic alkanes increases with increasing carbon number.Whereas in polycyclic aromatics,it decreases with increasing ring number,and in hydrogenated aromatics,it increases with hydrogenation degree.This work provides a new reference for the selection and proportioning of DCLS,i.e.,a solvent with higher hydrogen solubility can be added to provide active hydrogen for the reaction and thus reduce the hydrogen pressure.Besides,it brings important insight into the theoretical significance and practical value of the DCL.
基金Supported by National Natural Science Foundation of China (82360716).
文摘Lentinula edodes is the second largest edible mushroom in the world and is widely used as food and medicine.Modern research shows that lentinan(LNT)is the main active component of L.edodes.It has anti-cancer,treatment of diabetes,intestinal protection,anti-inflammatory,anti-oxidation,anti-aging,hepatoprotective,immune-regulating effects.In this review,the biological activity,action mechanism and structure-activity relationship of LNT in recent years are reviewed.On this basis,the existing problems were discussed,and the future research and application of LNT were prospected.Finally,it is hoped that this review will promote the in-depth study of LNT and provide a reference for its development as a drug and functional food.
基金This work was supported by National Nature Science Foundation of China and China Academy of Engineering Physics (No. 10376021) Provincial National Science Foundation of He'nan (No. 2004601107).
文摘Density functional theory (DFT) was used to calculate molecular descriptors (properties) for 12 fluoro-quinolone with anti-S.pneumoniae activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce dimensionality and investigate in which variables should be more effective for classifying fluoroquinolones according to their degree of an-S.pneumoniae activity. The PCA results showed that the variables ELUMO, Q3, Q5, QA, logP, MR, VOL and △EHL of these compounds were responsible for the anti-S.pneumoniae activity. The HCA results were similar to those obtained with PCA.The methodologies of PCA and HCA provide a reliable rule for classifying new fluoroquinolones with antiS.pneumoniae activity. By using the chemometric results, 6 synthetic compounds were analyzed through the PCA and HCA and two of them are proposed as active molecules with anti-S.pneumoniae, which is consistent with the results of clinic experiments.
基金Supported by the National Natural Science Foundation of China(31060045,31260091)~~
文摘Taking the six common anthocyanidins in nature, i.e. cyanidin, delphinidin, malvidin, pelargonidin, peonidin and petunidin, as examples, this paper summarized the main achievements about the structure-activity relationships of the coloration and stability of anthocyanidins. The coloration and stability of anthocyanidins are funda- mentally determined by the chemical and spatial structures of the anthocyanidins. The electron-deficient state, hydroxylation and methylation patterns, especially the ones on the B-ring, and coplanarity of the three rings of anthocyanidins are inde- pendently or synergetically, positively and/or negatively, influence the coloration and stability of the anthocyanidins. Thereinto, the in vivo colorations of anthocyanins are also related to the organ-selective and crystal- or anthocyanic vacuolar inclusion- related existence of the anthocyanidins. This review could provide a reference for the researches of the structure-optimizing and function-exploiting of anthocyanidins and also for the selection of the crops and cultivars containing specific anthocyani- din profiles.