期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Identification and Control of Hyperchaotic Lorenz System Based on Quantum Inspired PSO and Wavelet Neural Network
1
作者 Kun Zhang Wei Zheng 《控制工程期刊(中英文版)》 2019年第1期1-12,共12页
For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firs... For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firstly,the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI).Then,the parameters of wavelet neural network were optimized with PSO-QI and feedback compensation control for hyperchaotic Lorenz system is implemented using optimized PSOQI-Wavelet Neural Network.The numerical simulation results showed that this method has better precision and can quickly track given hyperchaotic Lorenz system. 展开更多
关键词 Hyperchaotic Lorenz System Chaotic Control quantum Inspired pso Wavelet Neural Network
下载PDF
基于QPSO的数据聚类 被引量:14
2
作者 龙海侠 须文波 孙俊 《计算机应用研究》 CSCD 北大核心 2006年第12期40-42,45,共4页
在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户... 在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K-Means聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。K-Means算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO算法的数据聚类性能比一般PSO算法更好。 展开更多
关键词 聚类 K—Means pso Qpso 聚类中心
下载PDF
基于Lab颜色空间的融合改进二进制量子PSO和Otsu优化算法 被引量:5
3
作者 徐武 文聪 +1 位作者 唐文权 郭兴 《计算机应用与软件》 北大核心 2022年第6期265-268,349,共5页
针对通过RGB空间各个颜色分量高度线性相关会导致分割过程处理速度慢、分割结果不准确的问题,以及二维Otsu算法实时性差,计算量大的缺陷,提出一种基于Lab空间的融合改进二进制量子PSO和Otsu优化算法。将RGB空间转换为Lab空间,减弱不同... 针对通过RGB空间各个颜色分量高度线性相关会导致分割过程处理速度慢、分割结果不准确的问题,以及二维Otsu算法实时性差,计算量大的缺陷,提出一种基于Lab空间的融合改进二进制量子PSO和Otsu优化算法。将RGB空间转换为Lab空间,减弱不同颜色分量的相关性;利用改进的二进制量子粒子群算法搜索最优阈值,作为改进二维Otsu算法的分割阈值,然后对图像进行分割。通过实验证明改进算法与其他算法相比,分割速度和分割精确度都有很大的提升。 展开更多
关键词 二维OTSU Lab颜色空间 二进制量子pso 语义分割
下载PDF
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
4
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于IQPSO优化ELM的熟料质量指标软测量研究 被引量:9
5
作者 赵朋程 刘彬 +1 位作者 孙超 王美琪 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第10期2243-2250,共8页
水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQP... 水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQPSO)算法,并采用提出的IQPSO算法优化超限学习机(ELM)的输入层权值和隐层阈值参数,在优化过程中同时兼顾均方根误差和隐层输出矩阵条件数最小的原则,建立了基于IQPSO优化ELM的水泥熟料f Ca O软测量模型,仿真验证结果表明,IQPSO算法具有较高的搜索精度以及较快的收敛速度,建立的软测量模型精度高、泛化能力强。最后基于该模型,通过软件编程的方法给出了水泥熟料质量指标软测量仪表,实现了f Ca O含量的在线软测量。 展开更多
关键词 量子势阱 粒子群 序贯二次规划 超限学习机 软测量
下载PDF
量子PSO粒子滤波在DR/GPS组合导航系统中的应用 被引量:2
6
作者 赵国材 赵力 +1 位作者 宋春雷 刘志德 《传感器与微系统》 CSCD 北大核心 2012年第4期149-152,共4页
将量子粒子群优化(QPSO)算法与粒子滤波(PF)相结合,提出了量子PSO粒子滤波(QPSO-PF)算法,对航位推算(DR)与GPS组合导航系统中的里程系数误差和航向误差进行辨识估计,并对里程系数和航向进行修正。该算法采用量子位对粒子进行编码,引入... 将量子粒子群优化(QPSO)算法与粒子滤波(PF)相结合,提出了量子PSO粒子滤波(QPSO-PF)算法,对航位推算(DR)与GPS组合导航系统中的里程系数误差和航向误差进行辨识估计,并对里程系数和航向进行修正。该算法采用量子位对粒子进行编码,引入量子旋转门与变异操作保持了粒子集的多样性,通过QPSO搜索寻优重新分配粒子,使粒子集有效地逼近真实的后验概率分布,从而有效地减轻了退化现象,提高了PF的精度。DR/GPS组合导航系统跑车实验结果表明:该算法有效地抑制了DR导航系统误差的增长,提高了组合导航系统的定位精度。 展开更多
关键词 粒子滤波 量子计算 粒子群优化 航位推算 组合导航
下载PDF
基于QPSO算法的作业车间调度问题的研究 被引量:6
7
作者 冯斌 石锦风 孙俊 《计算机工程与设计》 CSCD 北大核心 2007年第23期5690-5693,5786,共5页
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量... 针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解。实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性。 展开更多
关键词 遗传算法 群体智能算法 粒子群优化算法 量子粒子群优化算法 作业车间调度问题
下载PDF
基于QPSO-SVM算法的SELDI-TOF质谱数据分析 被引量:1
8
作者 张蓉 冯斌 孙俊 《计算机应用与软件》 CSCD 2011年第1期57-60,共4页
生物信息学领域的微阵列分析、质谱数据分析等大规模机器学习问题的不断涌现,对已有的特征选择算法提出了严峻的挑战,迫切需要研究适应于高维小样本特征的、准确性和运行效率等综合性能较好的、新的特征选择算法。将基于量子粒子群算法(... 生物信息学领域的微阵列分析、质谱数据分析等大规模机器学习问题的不断涌现,对已有的特征选择算法提出了严峻的挑战,迫切需要研究适应于高维小样本特征的、准确性和运行效率等综合性能较好的、新的特征选择算法。将基于量子粒子群算法(QPSO)与SVM结合,并将建立的诊断模型用于生物标记物的选择。实验结果表明,新的基于量子粒子群算法建立的模型不仅具有良好的预测精度,而且在速度上有大幅的提高。 展开更多
关键词 表面增强激光解析电离飞行时间质谱 粒子群优化算法(pso) 量子粒子群算法(Qpso) 特征选择技术 生物标记物
下载PDF
QPSO算法优化BP网络的网络流量预测 被引量:10
9
作者 冯华丽 刘渊 陈冬 《计算机工程与应用》 CSCD 2012年第3期102-104,共3页
网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,... 网络流量预测对于大规模网络的规划设计和网络资源管理等方面都具有积极的意义,是网络流量工程重要组成部分。结合QPSO算法和BP神经网络的优势,采用QPSO算法对BP神经网络的权值和阈值进行优化,并利用历史记录训练BP网络。仿真实验表明,与PSO训练的BP网络以及直接用BP网络进行预测的模型相比,基于QPSO训练的BP网络流量预测模型具有更好的预测能力。 展开更多
关键词 量子粒子群算法 粒子群算法 神经网络 网络流量 预测
下载PDF
基于QPSO的改进算法 被引量:9
10
作者 孔庆琴 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2007年第28期58-60,共3页
基于量子行为的粒子群优化算法(Quantum-behaved Particle Swarm Optimization,QPSO)提出一种新的搜索策略。在新的搜索策略中,粒子的每一维不再是只通过自身的信息进行下一步的搜索,而是某些维通过其他粒子的信息进行搜索。新的搜索策... 基于量子行为的粒子群优化算法(Quantum-behaved Particle Swarm Optimization,QPSO)提出一种新的搜索策略。在新的搜索策略中,粒子的每一维不再是只通过自身的信息进行下一步的搜索,而是某些维通过其他粒子的信息进行搜索。新的搜索策略确保了种群的多样性,很好地避免了早熟现象,并且没有引进多余的计算。用几个基准函数测试了改进的QPSO算法,实验结果表明了它的优越性。 展开更多
关键词 量子行为的粒子群优化算法 搜索策略 早熟 计算
下载PDF
QPSO算法求解无约束多目标优化问题 被引量:7
11
作者 管芳景 须文波 +1 位作者 孙俊 张春燕 《计算机工程与设计》 CSCD 北大核心 2007年第14期3285-3287,3290,共4页
在分析了用基于目标加权的PSO算法(WAPSO)的基础上,研究了利用基于量子行为的微粒群优化算法(QPSO)来解决多目标优化问题。提出了基于目标加权的QPSO算法(WAQPSO),利用WAQPSO算法解决无约束的多目标优化问题,通过典型的多目标测试函数实... 在分析了用基于目标加权的PSO算法(WAPSO)的基础上,研究了利用基于量子行为的微粒群优化算法(QPSO)来解决多目标优化问题。提出了基于目标加权的QPSO算法(WAQPSO),利用WAQPSO算法解决无约束的多目标优化问题,通过典型的多目标测试函数实验,验证了该算法解决无约束多目标问题的有效性。 展开更多
关键词 粒子群优化(pso) 目标加权 多目标优化 无约束优化 具有量子行为的微粒群优化算法
下载PDF
基于改进的QPSO训练BP网络的网络流量预测 被引量:11
12
作者 王鹏 刘渊 《计算机应用研究》 CSCD 北大核心 2009年第1期299-301,共3页
为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法... 为了提高网络流量预测的精度,采用一种改进的QPSO算法训练BP神经网络对网络流量数据的时间序列进行建模预测。针对标准的QPSO算法不可避免地出现早熟的不足,提出一种新的基于参数自适应的QPSO算法,较好地避免了粒子群的早熟,提高了算法的全局收敛性能。仿真实验结果表明,与PSO训练的BP网络、QPSO训练的BP网络作为预测模型相比,该模型具有更高的预测精度及很好的稳定性。 展开更多
关键词 量子粒子群优化算法 粒子群优化算法 早熟 神经网络 网络流量预测
下载PDF
基于BQPSO的潜水器路径规划算法 被引量:1
13
作者 韩应贤 刘静 朱大奇 《计算机工程》 CAS CSCD 北大核心 2011年第8期216-218,共3页
在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验... 在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验表明,BQPSO算法可以进行有效的自治水下机器人路径避障。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 二进制量子粒子群优化算法 路径规划
下载PDF
基于QPSO的纹理合成算法 被引量:2
14
作者 周焘 须文波 孙俊 《计算机工程与应用》 CSCD 北大核心 2007年第22期31-33,70,共4页
针对PSO算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以块算法为基础,量子粒子群优化算法(QPSO)为优化策略的纹理合成方法。实验结果表明,与标准PSO算法相比,由于量子粒子群优化算法(QPSO)显著的全局收敛性,这种新型的纹理合成... 针对PSO算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以块算法为基础,量子粒子群优化算法(QPSO)为优化策略的纹理合成方法。实验结果表明,与标准PSO算法相比,由于量子粒子群优化算法(QPSO)显著的全局收敛性,这种新型的纹理合成方法,使最后的合成图像中采样块结合处更流畅,纹理更细腻。 展开更多
关键词 纹理合成 块采样 粒子群优化算法(pso) 量子化粒子群算法(Qpso)
下载PDF
基于QPSO的重载齿轮多目标优化设计 被引量:1
15
作者 李盘荣 《现代机械》 2009年第5期43-46,共4页
粒子群优化算法(PSO)是一种基于群智能的优化方法,量子粒子群优化算法(QPSO)是基于PSO进行改进的算法,规则简单、收敛速度快、易于编程实现。对于多目标、多约束条件的重载齿轮的优化设计,本文提出了一种基于QPSO优化求解的设计方法;实... 粒子群优化算法(PSO)是一种基于群智能的优化方法,量子粒子群优化算法(QPSO)是基于PSO进行改进的算法,规则简单、收敛速度快、易于编程实现。对于多目标、多约束条件的重载齿轮的优化设计,本文提出了一种基于QPSO优化求解的设计方法;实践表明能够快速、有效求得优化解,是求解重载齿轮优化设计问题的一个较好方案。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 多目标 优化设计 重载齿轮
下载PDF
基于QPSO的上证指数ARCH模型 被引量:1
16
作者 梅娟 孙俊 须文波 《计算机工程》 CAS CSCD 北大核心 2007年第24期29-31,共3页
介绍一种利用量子行为粒子群算法(QPSO)建立上证指数收益的ARCH模型,利用不同的算法精确地估计模型中的参数,验证QPSO算法的优越性。利用得到的估计模型对指数收益进行预测,得到大致跟随指数实际走势的预测值。试验结果表明,QPSO算法比... 介绍一种利用量子行为粒子群算法(QPSO)建立上证指数收益的ARCH模型,利用不同的算法精确地估计模型中的参数,验证QPSO算法的优越性。利用得到的估计模型对指数收益进行预测,得到大致跟随指数实际走势的预测值。试验结果表明,QPSO算法比粒子群算法、遗传算法能更好地解决此类问题。 展开更多
关键词 ARCH模型 Qpso算法 pso算法 异方差 遗传算法
下载PDF
一种基于PSO思想的改进量子遗传算法 被引量:3
17
作者 王渊博 宋铮 吴伟 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第9期1345-1349,共5页
文章提出一种基于PSO思想的改进量子遗传算法。将PSO中的合作机制和记忆功能引入到QGA中,构造种群个体与当前最优解的距离参量,根据每个个体与当前最优解距离大小智能地控制旋转角的大小,使旋转角能够根据个体的进化差异选择不同旋转角... 文章提出一种基于PSO思想的改进量子遗传算法。将PSO中的合作机制和记忆功能引入到QGA中,构造种群个体与当前最优解的距离参量,根据每个个体与当前最优解距离大小智能地控制旋转角的大小,使旋转角能够根据个体的进化差异选择不同旋转角的自适应调整进化过程,从而使算法始终保持合适的搜索网格,加快算法收敛,同时也可以保证能够收敛到全局最优,避免早熟;并通过典型函数的测试验证了该算法的可行性和有效性。 展开更多
关键词 量子遗传算法 粒子群算法 自适应旋转角
下载PDF
基于改进QPSO和RBF神经网络的文本分类方法 被引量:3
18
作者 李滨旭 姚姜虹 《计算机系统应用》 2016年第7期264-267,共4页
为提高文本分类的准确性,本文提出了一种基于量子PSO和RBF神经网络的新的文本分类方法.首先建立描述样本类别的关键词集合,并采用模糊向量空间模型建立每类样本的特征向量,然后采用RBF神经网络实施文本自动分类,采用改进的量子PSO优化RB... 为提高文本分类的准确性,本文提出了一种基于量子PSO和RBF神经网络的新的文本分类方法.首先建立描述样本类别的关键词集合,并采用模糊向量空间模型建立每类样本的特征向量,然后采用RBF神经网络实施文本自动分类,采用改进的量子PSO优化RBF神经网络的参数,以提高其逼近能力.选取中国期刊网的部分文献作为实验数据,实验结果说明本文所提出方法的分类精准度与其他同类方法相比有明显的提高. 展开更多
关键词 文本分类 量子pso RBF神经网络 算法设计
下载PDF
基于QPSO的图像分割算法 被引量:1
19
作者 汪筱红 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第7期1088-1091,共4页
文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行... 文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行,仿真结果表明,基于QPSO优化的图像分割算法不仅克服了PSO容易过早陷入局部最优值的缺点,而且分割速度更快,是一种更有效的分割方法。 展开更多
关键词 图像分割 粒子群优化算法 具有量子行为粒子群优化算法
下载PDF
采用LWD-QPSO-SOMBP神经网络的拖拉机柴油机故障诊断 被引量:11
20
作者 周俊博 朱烨均 +1 位作者 肖茂华 吴剑铭 《农业工程学报》 EI CAS CSCD 北大核心 2021年第17期39-48,共10页
针对目前拖拉机柴油机故障诊断中单BP(Back Propagation)神经网络模型的局限性,该研究提出一种LWD-QPSO-SOMBP(Linear Weight Decrease-Quantum Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络的拖拉机... 针对目前拖拉机柴油机故障诊断中单BP(Back Propagation)神经网络模型的局限性,该研究提出一种LWD-QPSO-SOMBP(Linear Weight Decrease-Quantum Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络的拖拉机柴油机故障诊断模型。首先,将SOM(Self Organizing Maps)神经网络和BP神经网络结合,重置网络结构并利用LWD-QPSO(Linear Weight Decrease-Quantum Particle Swarm Optimization)算法对网络的权值和阈值进行优化;然后,分析拖拉机柴油机的故障机理,确定反映故障发生的数据信号;最后,确定LWD-QPSO-SOMBP神经网络模型的结构参数,基于CAN(Controller Area Network)总线技术采集潍柴WP6型拖拉机柴油机传感器信号数据对LWD-QPSO-SOMBP神经网络的性能进行测试,并将测试结果与BP神经网络、SOMBP(Self Organizing Maps Back Propagation)神经网络、PSO-SOMBP(Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络、LWD-PSO-SOMBP(Linear Weight Decrease-Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络及改进量子粒子群(Improved Quantum Particle Swarm Optimization,IQPSO)算法优化后的SOMBP神经网络的测试结果进行对比。试验结果表明,LWD-QPSO-SOMBP神经网络输出总误差为0.1118、平均相对误差为0.0058、均方误差为0.0003,相比于其他5种神经网络均为最低。LWD-QPSO-SOMBP神经网络充分发挥并有效综合了SOM神经网络在数据预处理及PSO算法在优化BP神经网络初始权值阈值方面的优势,实现了拖拉机柴油机的高精度故障诊断。LWD-QPSO-SOMBP神经网络由于使用SOM神经网络结构对输入数据进行预处理,网络收敛速度大幅度提升,相比单BP神经网络,迭代次数由2431次降为63次,下降了97.40%;同时采取LWD-QPSO算法对BP神经网络的初始权值阈值进行优化,降低了传统PSO算法的粒子适应度,进一步提高了网络的收敛精度和收敛速度,相比传统PSO算法,粒子适应度从0.15降为0.11,下降了26.67%,网络训练误差由0.004降为0.0006,下降了85.00%;LWD-QPSO-SOMBP神经网络的故障诊断准确率大幅度提升,相比于单BP神经网络,输出总准确率由85.00%上升至99.44%。研究结果可为高精度拖拉机柴油机故障诊断提供参考。 展开更多
关键词 农业机械 柴油机 故障诊断 BP神经网络 SOM神经网络 pso算法 LWD-Qpso算法
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部