For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firs...For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firstly,the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI).Then,the parameters of wavelet neural network were optimized with PSO-QI and feedback compensation control for hyperchaotic Lorenz system is implemented using optimized PSOQI-Wavelet Neural Network.The numerical simulation results showed that this method has better precision and can quickly track given hyperchaotic Lorenz system.展开更多
水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQP...水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQPSO)算法,并采用提出的IQPSO算法优化超限学习机(ELM)的输入层权值和隐层阈值参数,在优化过程中同时兼顾均方根误差和隐层输出矩阵条件数最小的原则,建立了基于IQPSO优化ELM的水泥熟料f Ca O软测量模型,仿真验证结果表明,IQPSO算法具有较高的搜索精度以及较快的收敛速度,建立的软测量模型精度高、泛化能力强。最后基于该模型,通过软件编程的方法给出了水泥熟料质量指标软测量仪表,实现了f Ca O含量的在线软测量。展开更多
基金National Natural Science Foundation of China(No.11261001)。
文摘For the identification and control problem of hyperchaotic Lorenz system,a method of feedback compensation control based on quantum inspired PSO and wavelet neural network(PSOQI-Wavelet Neural Network)is proposed.Firstly,the quantum principle obtained from Quantum PSO(QPSO)has been combined with standard PSO to form a new hybrid algorithm called PSO with Quantum Infusion(PSO-QI).Then,the parameters of wavelet neural network were optimized with PSO-QI and feedback compensation control for hyperchaotic Lorenz system is implemented using optimized PSOQI-Wavelet Neural Network.The numerical simulation results showed that this method has better precision and can quickly track given hyperchaotic Lorenz system.
文摘水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQPSO)算法,并采用提出的IQPSO算法优化超限学习机(ELM)的输入层权值和隐层阈值参数,在优化过程中同时兼顾均方根误差和隐层输出矩阵条件数最小的原则,建立了基于IQPSO优化ELM的水泥熟料f Ca O软测量模型,仿真验证结果表明,IQPSO算法具有较高的搜索精度以及较快的收敛速度,建立的软测量模型精度高、泛化能力强。最后基于该模型,通过软件编程的方法给出了水泥熟料质量指标软测量仪表,实现了f Ca O含量的在线软测量。