期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于QPSO算法的作业车间调度问题的研究 被引量:6
1
作者 冯斌 石锦风 孙俊 《计算机工程与设计》 CSCD 北大核心 2007年第23期5690-5693,5786,共5页
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量... 针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解。实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性。 展开更多
关键词 遗传算法 群体智能算法 粒子群优化算法 量子粒子群优化算法 作业车间调度问题
下载PDF
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
2
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于BQPSO的潜水器路径规划算法 被引量:1
3
作者 韩应贤 刘静 朱大奇 《计算机工程》 CAS CSCD 北大核心 2011年第8期216-218,共3页
在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验... 在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验表明,BQPSO算法可以进行有效的自治水下机器人路径避障。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 二进制量子粒子群优化算法 路径规划
下载PDF
基于QPSO的上证指数ARCH模型 被引量:1
4
作者 梅娟 孙俊 须文波 《计算机工程》 CAS CSCD 北大核心 2007年第24期29-31,共3页
介绍一种利用量子行为粒子群算法(QPSO)建立上证指数收益的ARCH模型,利用不同的算法精确地估计模型中的参数,验证QPSO算法的优越性。利用得到的估计模型对指数收益进行预测,得到大致跟随指数实际走势的预测值。试验结果表明,QPSO算法比... 介绍一种利用量子行为粒子群算法(QPSO)建立上证指数收益的ARCH模型,利用不同的算法精确地估计模型中的参数,验证QPSO算法的优越性。利用得到的估计模型对指数收益进行预测,得到大致跟随指数实际走势的预测值。试验结果表明,QPSO算法比粒子群算法、遗传算法能更好地解决此类问题。 展开更多
关键词 ARCH模型 Qpso算法 pso算法 异方差 遗传算法
下载PDF
一种基于PSO思想的改进量子遗传算法 被引量:3
5
作者 王渊博 宋铮 吴伟 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第9期1345-1349,共5页
文章提出一种基于PSO思想的改进量子遗传算法。将PSO中的合作机制和记忆功能引入到QGA中,构造种群个体与当前最优解的距离参量,根据每个个体与当前最优解距离大小智能地控制旋转角的大小,使旋转角能够根据个体的进化差异选择不同旋转角... 文章提出一种基于PSO思想的改进量子遗传算法。将PSO中的合作机制和记忆功能引入到QGA中,构造种群个体与当前最优解的距离参量,根据每个个体与当前最优解距离大小智能地控制旋转角的大小,使旋转角能够根据个体的进化差异选择不同旋转角的自适应调整进化过程,从而使算法始终保持合适的搜索网格,加快算法收敛,同时也可以保证能够收敛到全局最优,避免早熟;并通过典型函数的测试验证了该算法的可行性和有效性。 展开更多
关键词 量子遗传算法 粒子群算法 自适应旋转角
下载PDF
基于改进QPSO和RBF神经网络的文本分类方法 被引量:3
6
作者 李滨旭 姚姜虹 《计算机系统应用》 2016年第7期264-267,共4页
为提高文本分类的准确性,本文提出了一种基于量子PSO和RBF神经网络的新的文本分类方法.首先建立描述样本类别的关键词集合,并采用模糊向量空间模型建立每类样本的特征向量,然后采用RBF神经网络实施文本自动分类,采用改进的量子PSO优化RB... 为提高文本分类的准确性,本文提出了一种基于量子PSO和RBF神经网络的新的文本分类方法.首先建立描述样本类别的关键词集合,并采用模糊向量空间模型建立每类样本的特征向量,然后采用RBF神经网络实施文本自动分类,采用改进的量子PSO优化RBF神经网络的参数,以提高其逼近能力.选取中国期刊网的部分文献作为实验数据,实验结果说明本文所提出方法的分类精准度与其他同类方法相比有明显的提高. 展开更多
关键词 文本分类 量子pso RBF神经网络 算法设计
下载PDF
基于QPSO的图像分割算法 被引量:1
7
作者 汪筱红 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第7期1088-1091,共4页
文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行... 文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法。新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行,仿真结果表明,基于QPSO优化的图像分割算法不仅克服了PSO容易过早陷入局部最优值的缺点,而且分割速度更快,是一种更有效的分割方法。 展开更多
关键词 图像分割 粒子群优化算法 具有量子行为粒子群优化算法
下载PDF
采用LWD-QPSO-SOMBP神经网络的拖拉机柴油机故障诊断 被引量:11
8
作者 周俊博 朱烨均 +1 位作者 肖茂华 吴剑铭 《农业工程学报》 EI CAS CSCD 北大核心 2021年第17期39-48,共10页
针对目前拖拉机柴油机故障诊断中单BP(Back Propagation)神经网络模型的局限性,该研究提出一种LWD-QPSO-SOMBP(Linear Weight Decrease-Quantum Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络的拖拉机... 针对目前拖拉机柴油机故障诊断中单BP(Back Propagation)神经网络模型的局限性,该研究提出一种LWD-QPSO-SOMBP(Linear Weight Decrease-Quantum Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络的拖拉机柴油机故障诊断模型。首先,将SOM(Self Organizing Maps)神经网络和BP神经网络结合,重置网络结构并利用LWD-QPSO(Linear Weight Decrease-Quantum Particle Swarm Optimization)算法对网络的权值和阈值进行优化;然后,分析拖拉机柴油机的故障机理,确定反映故障发生的数据信号;最后,确定LWD-QPSO-SOMBP神经网络模型的结构参数,基于CAN(Controller Area Network)总线技术采集潍柴WP6型拖拉机柴油机传感器信号数据对LWD-QPSO-SOMBP神经网络的性能进行测试,并将测试结果与BP神经网络、SOMBP(Self Organizing Maps Back Propagation)神经网络、PSO-SOMBP(Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络、LWD-PSO-SOMBP(Linear Weight Decrease-Particle Swarm Optimization-Self Organizing Maps Back Propagation)神经网络及改进量子粒子群(Improved Quantum Particle Swarm Optimization,IQPSO)算法优化后的SOMBP神经网络的测试结果进行对比。试验结果表明,LWD-QPSO-SOMBP神经网络输出总误差为0.1118、平均相对误差为0.0058、均方误差为0.0003,相比于其他5种神经网络均为最低。LWD-QPSO-SOMBP神经网络充分发挥并有效综合了SOM神经网络在数据预处理及PSO算法在优化BP神经网络初始权值阈值方面的优势,实现了拖拉机柴油机的高精度故障诊断。LWD-QPSO-SOMBP神经网络由于使用SOM神经网络结构对输入数据进行预处理,网络收敛速度大幅度提升,相比单BP神经网络,迭代次数由2431次降为63次,下降了97.40%;同时采取LWD-QPSO算法对BP神经网络的初始权值阈值进行优化,降低了传统PSO算法的粒子适应度,进一步提高了网络的收敛精度和收敛速度,相比传统PSO算法,粒子适应度从0.15降为0.11,下降了26.67%,网络训练误差由0.004降为0.0006,下降了85.00%;LWD-QPSO-SOMBP神经网络的故障诊断准确率大幅度提升,相比于单BP神经网络,输出总准确率由85.00%上升至99.44%。研究结果可为高精度拖拉机柴油机故障诊断提供参考。 展开更多
关键词 农业机械 柴油机 故障诊断 BP神经网络 SOM神经网络 pso算法 LWD-Qpso算法
下载PDF
面向柔性作业车间调度问题的混沌编码量子粒子群优化算法
9
作者 胥远兴 张孟健 王德光 《系统仿真学报》 CAS CSCD 北大核心 2024年第10期2371-2382,共12页
为解决柔性作业车间调度问题,提出一种混沌编码量子粒子群优化算法。针对标准量子粒子群优化算法中粒子过早收敛于局部最优值的缺点,提出具有扰动行为的自适应收缩-扩张系数和关联粒子适应度值的计算方法,改善算法的全局搜索能力;通过... 为解决柔性作业车间调度问题,提出一种混沌编码量子粒子群优化算法。针对标准量子粒子群优化算法中粒子过早收敛于局部最优值的缺点,提出具有扰动行为的自适应收缩-扩张系数和关联粒子适应度值的计算方法,改善算法的全局搜索能力;通过引入混沌边界变异策略,减少粒子大量聚集在边界的概率,增加种群的多样性来提高搜索最优解的能力;针对量子粒子群优化算法的迭代特性,设计一种适用的混沌编码策略。将提出的改进量子粒子群优化算法应用于柔性作业车间调度问题,并通过多种基准算例与标准量子粒子群优化算法、粒子群优化算法和混合遗传算法进行对比,验证所提算法的性能。实验结果表明:混沌编码量子粒子群优化算法具有更好的稳定性和更强的寻优能力。 展开更多
关键词 量子粒子群优化算法 柔性作业车间调度 扰动行为 混沌映射 收缩-扩张系数
下载PDF
基于量子粒子群算法的风火打捆容量及直流落点优化配置 被引量:32
10
作者 王智冬 刘连光 +2 位作者 刘自发 王帅 由子昂 《中国电机工程学报》 EI CSCD 北大核心 2014年第13期2055-2062,共8页
针对如何根据调峰容量等约束条件,优化风电、火电容量配置及送电落点问题,以风电外送输电工程建设投资、输电损耗和弃风电量损失为优化目标函数,提出以功率平衡、风电变化速率与火电调节速度匹配为约束条件,基于量子粒子群优化算法研究... 针对如何根据调峰容量等约束条件,优化风电、火电容量配置及送电落点问题,以风电外送输电工程建设投资、输电损耗和弃风电量损失为优化目标函数,提出以功率平衡、风电变化速率与火电调节速度匹配为约束条件,基于量子粒子群优化算法研究直流外送落点及风火打捆容量的优化配置问题。量子粒子群优化算法采用量子理论中的叠加态特性和概率表达特性,潜在地增加了粒子群算法中种群的空间分布多样性和全局寻优能力。运用量子粒子群优化算法以及构建的优化模型,以解决我国风电跨区消纳为目的,对某实际规划区域的风火容量进行优化配置,证明了所提模型和方法科学、有效。 展开更多
关键词 风火打捆 容量分配 直流落点 量子粒子群算法 调峰容量
下载PDF
混合量子算法及其在flow shop问题中的应用 被引量:3
11
作者 傅家旗 叶春明 谢金华 《计算机工程与应用》 CSCD 北大核心 2008年第20期48-50,95,共4页
量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微... 量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微粒群算法(PSO)及进化计算思想融入QEA中,构成了混合量子算法(HQA)。采用flowshop经典问题对算法进行了测试,结果证明混合算法克服了QEA的缺陷,对于求解排序问题具有一定的普适性。 展开更多
关键词 量子进化算法 量子比特 微粒群算法 混合量子算法
下载PDF
结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法 被引量:47
12
作者 韩鹏 李银红 +3 位作者 何璇 付元欢 游昊 李本瑜 《电力系统自动化》 EI CSCD 北大核心 2016年第23期101-108,共8页
光伏阵列在局部阴影时的P-U曲线呈现多峰特性,需要设计光伏多峰最大功率点跟踪方法,以实现光伏发电最大功率输出,提高光伏发电效率。相比粒子群优化算法,量子粒子群优化算法具有收敛速度更快和全局收敛性等优势。提出了一种基于量子粒... 光伏阵列在局部阴影时的P-U曲线呈现多峰特性,需要设计光伏多峰最大功率点跟踪方法,以实现光伏发电最大功率输出,提高光伏发电效率。相比粒子群优化算法,量子粒子群优化算法具有收敛速度更快和全局收敛性等优势。提出了一种基于量子粒子群优化算法的光伏多峰最大功率点跟踪改进方法。该方法采用量子粒子群优化算法实现最大功率点的全局搜索;根据光伏阵列在局部阴影时P-U曲线上功率极值点的分布特点初始化种群中的粒子总数及其电压;并根据量子粒子群优化算法收敛时粒子自身最优位置的特点,提出了更适合光伏多峰最大功率点跟踪的收敛判据。仿真测试表明,提出的改进方法能够快速有效地实现光伏多峰最大功率点跟踪,收敛速度更快,避免了不收敛的问题,且具有应对光照情况变化的能力,提高了局部阴影时光伏发电的效率。 展开更多
关键词 光伏发电 最大功率点跟踪 粒子群优化算法 量子粒子群优化算法
下载PDF
一种具有自我更新机制的量子粒子群优化算法 被引量:3
13
作者 奚茂龙 吴小俊 +1 位作者 方伟 孙俊 《计算机工程与应用》 CSCD 北大核心 2015年第22期1-9,21,共10页
自然界中生命体都存在着有限的生命周期,随着时间的推移生命体会出现老化并死亡的现象,这种老化机制对于生命群体进化并保持多样性有重要影响。针对量子行为粒子群(QPSO)算法中粒子存在老化并使得算法存在早熟收敛的现象,将生命体的自... 自然界中生命体都存在着有限的生命周期,随着时间的推移生命体会出现老化并死亡的现象,这种老化机制对于生命群体进化并保持多样性有重要影响。针对量子行为粒子群(QPSO)算法中粒子存在老化并使得算法存在早熟收敛的现象,将生命体的自我更新机制引入了QPSO算法,在粒子群体进化中提出领导者粒子和挑战者粒子,随着群体粒子的老化,当领导者粒子领导力耗尽不能引导群体进化时,挑战者粒子通过竞争更新机制成为新的领导者粒子引导群体进化并保持群体多样性,并证明了算法的全局收敛性。将提出的算法与多种典型改进QPSO算法通过12个CEC2005 benchmark测试函数进行比较,对结果进行了分析。仿真结果显示,该算法具有较强的全局搜索能力,尤其在7个多峰测试函数中,综合性能最优。 展开更多
关键词 粒子群算法 量子行为 自我更新机制 多样性 全局收敛 老化
下载PDF
随机选择最优个体的量子粒子群优化算法 被引量:4
14
作者 周阳花 黄麟 奚茂龙 《计算机应用》 CSCD 北大核心 2009年第6期1554-1558,共5页
在分析量子行为粒子群优化算法的基础上,针对算法后期粒子群体容易聚集到一个狭小搜索区域,群体多样性降低的问题,提出了在算法中引入随机选择最优个体的改进方法,提高算法搜索过程中粒子群体的多样性。将改进后的量子粒子群算法与量子... 在分析量子行为粒子群优化算法的基础上,针对算法后期粒子群体容易聚集到一个狭小搜索区域,群体多样性降低的问题,提出了在算法中引入随机选择最优个体的改进方法,提高算法搜索过程中粒子群体的多样性。将改进后的量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较,仿真结果表明改进后的算法更适合解决多峰类的优化问题。 展开更多
关键词 粒子群算法 量子行为 随机选择 最优个体
下载PDF
含维变异算子的量子粒子群算法 被引量:10
15
作者 王璋 冯斌 孙俊 《计算机工程与设计》 CSCD 北大核心 2008年第6期1478-1481,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种新的量子粒子群优化算法——含维变异算子的量子粒子群算法(QPSODMO)。计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,让所有粒子在该维上的位置重... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种新的量子粒子群优化算法——含维变异算子的量子粒子群算法(QPSODMO)。计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,让所有粒子在该维上的位置重新均匀分布在可行区域上。对测试函数所做的对比实验表明,所提出的QPSODMO增强了全局搜索能力,克服了PSO算法易于收敛到局部最优的缺点,也优于原始的量子粒子群算法。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 维变异算子 全局最优 均匀分布
下载PDF
改进的粒子群优化算法 被引量:9
16
作者 靳雁霞 韩燮 周汉昌 《计算机工程与设计》 CSCD 北大核心 2009年第17期4074-4076,共3页
为改善基本粒子群的全局、局部搜索能力和收敛速度以及计算精度,基于经典PSO方法和量子理论基础之上,提出了一种改进的基于量子行为的PSO算法--cQPSO算法。新算法中,采用全同粒子系更新粒子位置,并引用混沌思想,对每个粒子进行混沌搜索... 为改善基本粒子群的全局、局部搜索能力和收敛速度以及计算精度,基于经典PSO方法和量子理论基础之上,提出了一种改进的基于量子行为的PSO算法--cQPSO算法。新算法中,采用全同粒子系更新粒子位置,并引用混沌思想,对每个粒子进行混沌搜索,试图改善粒子的全局、局部搜索能力和收敛速度以及计算精度。对经典函数的测试计算表明,改进算法的性能优于经典的PSO算法、基于量子行为的PSO算法。 展开更多
关键词 粒子群优化算法 量子行为 混沌思想 局部搜索 全同粒子系
下载PDF
并行自适应免疫量子粒子群优化算法 被引量:4
17
作者 李红婵 朱颢东 《计算机工程》 CAS CSCD 北大核心 2011年第5期221-223,共3页
为克服粒子群优化算法早熟收敛及粒子在进化过程中缺乏方向指导的问题,采用量子技术及免疫机制,提出一种自适应免疫量子粒子群优化算法。针对其计算量大、耗时长的缺点,结合已有的并行计算技术,构造该算法的并行计算方法。仿真实验结果... 为克服粒子群优化算法早熟收敛及粒子在进化过程中缺乏方向指导的问题,采用量子技术及免疫机制,提出一种自适应免疫量子粒子群优化算法。针对其计算量大、耗时长的缺点,结合已有的并行计算技术,构造该算法的并行计算方法。仿真实验结果表明,该并行算法在搜索能力和运行时间方面具有较好的性能。 展开更多
关键词 粒子群优化算法 量子技术 免疫机制 并行计算
下载PDF
应用新型量子粒子群优化算法求解PFSP问题 被引量:5
18
作者 叶春明 陈子皓 寇明顺 《技术与创新管理》 2012年第2期162-165,共4页
为了提高粒子群算法在求解调度问题时的搜索能力和优化效率以及避免早熟收敛。通过采用了一种新颖的量子粒子群算法,用量子位的概率幅对粒子位置编码,用量子旋转门实现粒子移动,完成粒子搜索;并采用量子非门来实现变异,从而提高种群多... 为了提高粒子群算法在求解调度问题时的搜索能力和优化效率以及避免早熟收敛。通过采用了一种新颖的量子粒子群算法,用量子位的概率幅对粒子位置编码,用量子旋转门实现粒子移动,完成粒子搜索;并采用量子非门来实现变异,从而提高种群多样性。由于每个量子都有两个概率幅,因此每个粒子实际占据两个粒子位置,所以在粒子数目相等的情况下,能加速粒子的搜索进程。仿真实验结果表明,在求解置换流水线生产调度问题时优于基本粒子群算法。 展开更多
关键词 智能群优化算法 粒子群优化算法 量子粒子群算法 置换流水线调度问题
下载PDF
求解job-shop调度问题的量子粒子群优化算法 被引量:4
19
作者 石锦风 冯斌 孙俊 《计算机应用研究》 CSCD 北大核心 2008年第3期684-686,691,共4页
针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量... 针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量子粒子群优化算法的进化规则在调度空间内搜索最优解。仿真实例结果证明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法和粒子群优化算法。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 作业车间调度
下载PDF
基于量子遗传算法的无线传感器网络路由研究 被引量:7
20
作者 唐义龙 潘炜 +2 位作者 李念强 廖一尔 徐明峰 《传感器与微系统》 CSCD 北大核心 2011年第12期68-70,74,共4页
对于无线传感器网络(WSNs)中的两大关键性问题路由搜寻和能量优化,引入量子遗传算法进行路径的搜寻,并改进算法编解码思路,降低由于网络规模扩大而导致编码长度急速增加,即减少算法的计算复杂度,从而解决传统编码方式下的量子遗传算法... 对于无线传感器网络(WSNs)中的两大关键性问题路由搜寻和能量优化,引入量子遗传算法进行路径的搜寻,并改进算法编解码思路,降低由于网络规模扩大而导致编码长度急速增加,即减少算法的计算复杂度,从而解决传统编码方式下的量子遗传算法难以适用于大规模的WSNs的缺点。通过实验表明:该方法能够得到更加优越和稳定的路径搜索结果,与粒子群优化算法进行1000次重复路径搜寻试验比较,其平均最优解提高了18.9%,稳定性提升了38.9%。 展开更多
关键词 无线传感器网络 量子遗传算法 粒子群优化 能量 时延
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部